
JFormDesigner 3.0 Manual

JFormDesigner 3.0 Manual
Version: 3.0

Copyright © 2004-2006 FormDev Software GmbH. All rights reserved.

Contents

JFormDesigner .. 2
What's New .. 4
User Interface ... 8

Menus ... 9
Toolbars ... 12
Design View .. 14

Headers ... 17
In-place-editing .. 20
Keyboard Navigation .. 20
Menu Designer .. 21
Button Groups .. 23
JTabbedPane .. 25
Events ... 27

Palette ... 29
Structure View .. 33
Properties View ... 35

Property Editors .. 39
Layout Properties .. 51
Constraints Properties .. 52
Client Properties .. 53

Error Log View .. 54
Localization ... 55
Projects .. 62
Preferences ... 64

IDE Integrations .. 77
Eclipse plug-in ... 78
IntelliJ IDEA plug-in ... 83
Other IDEs ... 88

Layout Managers ... 89
BorderLayout .. 91
BoxLayout .. 92
CardLayout ... 93
FlowLayout ... 94
FormLayout (JGoodies) ... 95

Column/Row Templates .. 98
Column/Row Groups .. 99

GridBagLayout ... 101
GridLayout .. 104
IntelliJ IDEA GridLayout .. 105
null Layout .. 107
TableLayout .. 109

Java Code Generator .. 111
Nested Classes .. 112
Code Templates ... 114

Runtime Library ... 115
JavaBeans ... 117
JGoodies Forms & Looks .. 120

- 1 -

JFormDesigner 3.0 Manual

JFormDesigner

Introduction

JFormDesigner is an innovative GUI designer for Java Swing user interfaces. It is easy and intuitive to use and
provides a lot of powerful features.

JFormDesigner is available in three editions: as stand-alone application and as IDE plug-ins for Eclipse and
IntelliJ IDEA. This documentation covers all editions. If there are functional differences between the editions,
they are marked with: Stand-alone, Eclipse plug-in, IntelliJ IDEA plug-in or IDE plug-ins.

Key features

Easy and intuitive
to use, powerful
and productive

JFormDesigner provides an easy-to-use but powerful user interface. Easily drag and
drop components, resize components using the handles, set properties, etc. Powerful
features like in-place-editing, keyboard navigation, automatic component ordering (for
grid based layout managers), IntelliGap, auto-insert columns/rows, drag and drop of
columns/rows bean morphing, layout manager changing increase your productivity.

IDE plug-ins and
stand-alone
application

JFormDesigner is available as IDE plug-ins for Eclipse and IntelliJ IDEA and as stand-
alone application.

JGoodies
FormLayout and
TableLayout
support

These open source layout managers allow you to design high quality forms. JGoodies
FormLayout support includes column/row specifications (alignment, size, resize
behavior), IntelliGap (automatically handles gap columns/rows) and column/row
grouping (makes widths/heights equal). Also other parts of the JGoodies Forms
framework are supported (DLU borders, component factory). TableLayout is fully
supported (column/row size, gaps, alignment).

Advanced
GridBagLayout
support

The advanced GridBagLayout support allows the specification of horizontal and vertical
gaps (as in TableLayout). JFormDesigner automatically computes the
GridBagConstraints.insets for all components. This makes designing a form with
consistent gaps using GridBagLayout much easier. No longer wrestling with
GridBagConstraints.insets ;-)

Column and row
headers

The column and row headers (for grid based layout managers) show the structure of the
layout (including column/row indices, alignment, growing, grouping) and allow you to
insert or delete columns/rows and change column/row properties. It's also possible to
drag and drop columns/rows (incl. contained components and gaps). This allows you to
swap columns or move rows in seconds.

- 2 -

JFormDesigner 3.0 Manual

Localization
support

Localizing forms using properties files has never been easier. Specify a resource bundle
name and a prefix for keys when creating a new form and then forget about it.
JFormDesigner automatically puts all strings into the specified resource bundle (auto-
externalizing). It also updates resource keys when renaming components, copies
resource strings when copying components and removes resource strings when deleting
components.

You can also externalize and internalize strings, edit resource bundle strings, add
locales, switch locale used in Design view, in-place-edit text of current locale.

Java code
generator or
runtime library

Either let JFormDesigner generate Java source code for your forms (the default) or use
the royalty-free runtime library to load JFormDesigner XML files at runtime. Your choice.
Turn off the code generator in the Preferences, if you don't need it.

Generation of
nested classes

The Java code generator is able to generate and update nested classes. You can specify
a class name for each component in your form. This allows you to organize your source
code in an object-oriented way.

- 3 -

JFormDesigner 3.0 Manual

What's New in JFormDesigner 3.0

JFormDesigner 3.0 introduces more than 60 new features and enhancements. This topic describes some of the
significant or more interesting changes. Please have a look at the changelog for a complete list or changes.

Eclipse plug-in The Eclipse plug-in fully integrates JFormDesigner into Eclipse.

IntelliJ IDEA
plug-in

The IntelliJ IDEA plug-in fully integrates JFormDesigner into IntelliJ IDEA.

Convert
IntelliJ IDEA
forms

JFormDesigner can convert IntelliJ IDEA forms (.form files) to JFormDesigner forms. Stand-
alone: Either select File > Import from the main menu or drag .form files to the
JFormDesigner window. IDE plug-ins: Right-click on the form file and select Convert to
JFormDesigner Form from the popup menu.

IntelliJ IDEA
GridLayout
support

The IntelliJ IDEA GridLayout manager is supported to make it easier to migrate forms, which
were created with IntelliJ IDEA's GUI builder.

- 4 -

http://www.formdev.com/changes.html

JFormDesigner 3.0 Manual

Project
manager

The stand-alone edition of JFormDesigner now includes a simple project manager that allows
you to use project specific source folders and classpaths. The IDE plug-ins use the IDE
projects.

Improved
Localization
support

JFormDesigner's advanced localization support has been further improved:

• Modifications in properties files are now done without loosing comments and without
changing the order of keys.

• It is now possible to use resource bundles in any folder (within source folders).
• You can now change the resource bundle used in the form.
• Use existing keys . In the Properties view click the small globe in a String property

value to open the "Choose Key" dialog.
• Missing resources are logged to Error Log view.
• Delete Locale command added.
• Reload properties files on external changes.
• Localization of mnemonics.
• Template for new properties files.

Resizing of
columns/rows

You can now use the headers to change the (minimum) size of a column/row. Click near the
right edge of a column/row and drag it.

Nest in
Container

The "Nest in Container" command allows you to nest selected components in a new container
(usually a JPanel). Right-click on a component in the Design or Structure view and select
Nest in JPanel from the popup menu. The new container gets the same layout manager as
the old container and is placed at the same location where the selected components were
located. For grid-based layout managers, the new container gets columns and rows and the
layout constraints of the selected components is preserved.

Move and
resize using
keyboard in
null layout

In null Layout manager you can now move selected components with Ctrl+ArrowKey and
change size with Shift+ArrowKey. All alignment commands have now keyboard shortcuts.

- 5 -

JFormDesigner 3.0 Manual

Improved
update of
generated
Java code

The Java code generator now better updates the source code:

• Renames existing event handler methods when changing the event handler name.
• Renames existing component getter methods and update the return statement when

renaming a component.
• Renames existing nested classes when changing the "Nested Class Name" property.
• Updates the extends clause of a class when morphing a bean, which is connected to a

(nested) class.

New Java
code
generation
options

The Java code generator supports various new options:

• Generation of explicit import statements.
• Use 'this.' to access component member variables.
• Use PanelBuilder for JGoodies FormLayout.
• Use empty GridBagConstraints constructor (for Java <= 1.1).
• Specification of i18n getBundle() and getString() code templates.
• Parametrization of component class names (e.g. MyComponent<String>).
• Global member variable prefix in preferences (e.g. "m_").

Java 5 support The Java code generator can generate source code that uses Java 5 language features (e.g.
auto-boxing, @Override, etc). You can also use Java 5 enums as property values and set
annotations for component variables.

- 6 -

JFormDesigner 3.0 Manual

Extended
Choose Bean
dialog

The Choose Bean dialog now has an additional tab named "JARs", which allows you to select
classes that are marked as JavaBean in the JAR's manifest. The provider of the component
JAR can mark some classes as JavaBean in the manifest file. Popular 3rd party component
libraries like MiG Calendar or JIDE components use this to make it easier to find the few
classes, which can be used in GUI builders, in libraries that contain hundreds of classes.

Client
properties
support

You can now use client properties. Them can be defined in the Client Properties preferences
and set in the Properties view.

TableModel
editor
enhanced

The enhanced TableModel editor now provides more features necessary for prototyping:
predefined values for columns, use Date as column type, specification of
preferred/minimum/maximum column widths, resizable flag.

- 7 -

http://www.jidesoft.com/
http://www.migcalendar.com/

JFormDesigner 3.0 Manual

User Interface
This is the main window of JFormDesigner stand-alone edition:

The main window consists of the following areas:

• Main Menu : Located at the top of the window.
• Toolbar : Located below the main menu.
• Palette : Located at the left side of the window.
• Design View : Located at the center of the window.
• Structure View : Located at the upper right of the window.
• Properties View : Located at the lower right of the window.
• Error Log View : Located below the Design view. This view is not visible in the above screenshot.

- 8 -

JFormDesigner 3.0 Manual

Menus

You can invoke most commands from the main menu (at the top of the main frame) and the various context
(right-click) menus.

Main Menu

The main menu is displayed at the top of the JFormDesigner main window.

File menu

New Project Creates a new project.

Open Project Opens an existing project.

Reopen
Project

Displays a submenu of previously opened projects. Select a project to open it.

Project
Properties

Displays the project properties.

Close Project Closes the active project.

New Form Creates a new form.

Open Form Opens an existing form.

Reopen Form Displays a submenu of previously opened forms. Select a form to open it.

Close Closes the active form.

Close All Closes all open forms.

Save Saves the active form and generates the Java source code for the form (if Java Code
Generation is switched on in the Preferences).

Save As Saves the active form under another file name or location and generates the Java source
code for the form (if Java Code Generation is switched on in the Preferences).

Save All Saves all open forms and generates the Java source code for the forms (if Java Code
Generation is switched on in the Preferences).

Import Imports Netbeans or IntelliJ IDEA .form files and creates new JFormDesigner forms. Use
File > Save to save the new form in the same folder as the .form file. This also updates
the .java file.

Exit Exits JFormDesigner. Mac OS X: this item is in the JFormDesigner application menu.

Edit menu

Undo Reverses your most recent editing action.

Redo Re-applies the editing action that has most recently been reversed by the Undo action.

Cut Cuts the selected components to the clipboard.

Copy Copies the selected components to the clipboard.

Paste Pastes the components in the clipboard to the selected container of the active form.

Rename Renames the selected component.

Delete Deletes the selected components.

- 9 -

JFormDesigner 3.0 Manual

View menu

Show
Diagonals

Shows diagonals.

Squint Test Simulates evaluating a graphic layout by squinting your eyes. This tests legibility and
whether the overall layout is a strong, clear layout. You can change the squint intensity in
the Preferences.

Refresh Refresh the Design view of the active form. Reloads all classes used by the form and
recreates the form preview shown in the Design view. Use this command, if you changed
the code of a component used in the form to reload the component classes.

Form menu

Test Form Tests the active form. Creates live instances of the form in a new window. You can close
that window by pressing the Esc key when the window has the focus. If your form
contains more than one top-level component, use the drop-down menu in the toolbar to
test another component.

Localize Edit localization settings, resource bundle strings, create new locales or delete locales.

New Locale Creates a new locale.

Delete Locale Deletes an existing locale.

Externalize
Strings

Moves strings to a resource bundle for localization. Use this command to start localizing
existing forms.

Internalize
Strings

Moves strings from a resource bundle into the form and remove the strings from the
resource bundle.

Generate Java
Code

Generates the Java code for the active form. Normally it's not necessary to use this
command because when you save a form, the Java code will be also generated.

Window menu

Activate
Designer

Activates the Design view.

Activate
Structure

Activates the Structure view.

Activate
Properties

Activates the Properties view.

Activate Error
Log

Activates the Error Log view. By default, the Error Log view is not visible. It automatically
appears if an error occurs.

Next Form Activates the next form.

Previous Form Activates the previous form.

Preferences Opens the Preferences dialog. Mac OS X: this item is in the JFormDesigner application
menu.

Help menu

Help Contents Displays help topics.

What's New Displays what's new in the current release.

Tip of the Day Displays a list of interesting productivity features.

Register Activates your license.

License Displays information about your license.

About Displays information about JFormDesigner and the system properties.

- 10 -

JFormDesigner 3.0 Manual

Context menus

Context menus appear when you're right-click on a particular component or control.

Design view context menu:

Properties view context menu:

- 11 -

JFormDesigner 3.0 Manual

Toolbars

Toolbars provides shortcuts to often used commands.

Main Toolbar

This is the toolbar of JFormDesigner stand-alone edition. Many of commands are also used in the toolbars of
the IDE plug-ins.

New Project Creates a new project.

Open Project Opens an existing project.

Project Properties Displays the project properties.

New Form Creates a new form.

Open Form Opens an existing form.

Save Saves the active form and generates the Java source code for the form (if Java Code
Generation is switched on in the Preferences).

Save All Saves all open forms and generates the Java source code for the forms (if Java Code
Generation is switched on in the Preferences).

Undo Reverses your most recent editing action.

Redo Re-applies the editing action that has most recently been reversed by the Undo
action.

Cut Cuts the selected components to the clipboard.

Copy Copies the selected components to the clipboard.

Paste Pastes the components in the clipboard to the selected container of the active form.

Delete Deletes the selected components.

Test Form Tests the active form. Creates live instances of the form in a new window. You can
close that window by pressing the Esc key when the window has the focus. If your
form contains more than one top-level component, use the drop-down menu to test
another component.

Allows you to change the look and feel of the components in the Design view. You can
add other look and feels in the Preferences.

Show Diagonals Shows diagonals.

Squint Test Simulates evaluating a graphic layout by squinting your eyes. This tests legibility and
whether the overall layout is a strong, clear layout. You can change the squint
intensity in the Preferences.

Refresh Refresh the Design view of the active form. Reloads all classes used by the form and
recreates the form preview shown in the Design view. Use this command, if you
changed the code of a component used in the form to reload the component classes.

Allows you to change the locale of the form in the Design view. "(no locale)" is show if
the form is not localized. Use Form > Externalize Strings to start localizing a form.

Localize Edit localization settings, resource bundle strings, create new locales or delete locales.

- 12 -

JFormDesigner 3.0 Manual

Generate Java
Code

Generates the Java code for the active form. Normally it's not necessary to use this
command because when you save a form, the Java code will be also generated.

Help Contents Displays help topics.

- 13 -

JFormDesigner 3.0 Manual

Design View

This view is the central part of JFormDesigner. It displays the opened forms and lets you edit forms.

Stand-alone: At top of the view, tabs are displayed for each open form. Click on a tab to activate a form. To
close a form, click the symbol that appears on the right side of a tab if the mouse is over it. An asterisk (*)
in front of the form name indicates that the form has been changed.

IDE plug-ins: The Design view is integrated into the IDEs, which have its own tabs.

On the left side of the view and below the tabs, you can see the column and row headers. These are important
controls for grid based layout managers. Use them to insert, delete or move columns/rows and change
column/row properties.

In the center is the design area. It displays the form, grids and handles. You can drag and drop components,
resize, rename, delete components or in-place-edit labels.

Selecting components

To select a single component, click on it. To select multiple components, hold down the Ctrl (Mac OS X:
Command) or Shift key and click on the components. To select the parent of a selected component, hold down
the Alt key (Mac OS X: Option key) and click on the selected component.

To select components in a rectangular area, select Marquee Selection in the Palette and click-and-drag a
rectangular selection area in the Design view. Or click-and-drag on the free area in the Design view. All
components that lie partially within the selection rectangle are selected.

The selection in the Design view and in the Structure view is synchronized both ways.

- 14 -

JFormDesigner 3.0 Manual

Drag feedback

JFormDesigner provides four types of drag feedback.

The gray figure shows the outline of the dragged components. It always follows the mouse location. The green
figure indicates the drop location, the yellow figure indicates a new column/row and red figures indicate
occupied areas.

Move or copy components

To move components simply drag them to the new location. You will get reasonable visual feedback during the
drag operation.

To copy components, proceed just as moving components, but hold down the Ctrl key (Mac OS X: Option key)
before dropping the components.

You can cancel all drag operations using the Esc key.

Resize components

Use the selection handles to resize components. Click on a handle and drag it.

The green feedback figure indicates the new size of the component. The tool tip provides additional information
about location, size and differences.

Whether a component is resizable or not depends on the used layout manager.

Morph components

The "Morph Bean" command allows you to change the class of existing components without loosing properties,
events or layout information. Right-click on a component in the Design or Structure view and select Morph
Bean from the popup menu.

- 15 -

JFormDesigner 3.0 Manual

Nest in Container

The "Nest in Container" command allows you to nest selected components in a new container (usually a
JPanel). Right-click on a component in the Design or Structure view and select Nest in JPanel from the popup
menu. The new container gets the same layout manager as the old container and is placed at the same location
where the selected components were located. For grid-based layout managers, the new container gets columns
and rows and the layout constraints of the selected components are preserved.

Non-visual beans

To add a non-visual bean to a form, select it in the Palette (or use Choose Bean) and drop it into the free area
of the Design view. Non-visual beans are shown in the Design view using proxy components.

Red beans

If a bean could not instantiated (class not found, exception in constructor, etc), a red bean will be shown in
the designer view as placeholder.

To fix such problems, add required jars to the classpath in the Project dialog and then select View > Refresh
from the menu (or press F5) to refresh the designer view.

- 16 -

JFormDesigner 3.0 Manual

Headers

The column and row headers (for grid based layout managers) show the structure of the layout. This includes
column/row indices, alignment, growing and grouping.

Use them to insert, delete or move columns/rows and change column/row properties. Right-clicking on a
column/row displays a popup menu. Double-clicking shows a dialog that allows you to edit the column/row
properties.

If a column width or row height is zero, which is the case if a column/row is empty, then
JFormDesigner uses a minimum column width and row height. Columns/rows having a
minimum size are marked with a light-red background in the column/row header.

Selecting columns/rows

You can select more than one column/row. Hold down the Ctrl key (Mac OS X: Command key) and click on
another column/row to add it to the selection. Hold down the Shift key to select the columns/rows between the
last selected and the clicked column/row.

Insert column/row

Right-click on the column/row where you want to insert a new one and select Insert Column / Insert Row
from the popup menu. The new column/row will be inserted before the right-clicked column/row. To add a
column/row after the last one, right-click on the area behind the last column/row.

If the layout manager is FormLayout, an additional gap column/row will be added. Hold down the Shift key
before selecting the command from the popup menu to avoid this.

Besides using the popup menu, you can insert new columns/row when dropping components on column/row
gaps or outside of the existing grid. In the first figure, a new row will be inserted between existing rows. In the
second figure, a virtual grid is shown below/right to the existing grid and a new row will be added.

Delete columns/rows

Right-click on the column/row that you want delete and select Delete Column / Delete Row from the popup
menu.

If the layout manager is FormLayout, an existing gap column/row beside the removed column/row will also be
removed. Hold down the Shift key before selecting the command from the popup menu to avoid this.

- 17 -

JFormDesigner 3.0 Manual

Split columns/rows

Right-click on the column/row that you want split and select Split Column / Split Row from the popup menu.

If the layout manager is FormLayout, an additional gap column/row will be added. Hold down the Shift key
before selecting the command from the popup menu to avoid this.

Move columns/rows

The headers allow you to drag and drop columns/rows (incl. contained components and gaps). This allows you
to swap columns or move rows in seconds. Click on a column or row and drag it to the new location.
JFormDesigner updates the column/row specification and the locations of the moved components.

If the layout manager is FormLayout, then existing gap columns/rows are also moved. Hold down the Shift key
before dropping a column/row to avoid this.

Resize columns/rows

To change the (minimum) size of a column/row, click near the right edge of a column/row and drag it.

FormLayout supports minimum and constant column/row sizes. Hold down the Ctrl key to change the minimum
size. TableLayout supports only constant sizes and GridBagLayout supports only minimum sizes.

- 18 -

JFormDesigner 3.0 Manual

Header symbols

Following symbols are used in the headers:

Column Header

Left aligns components in the column.

Right aligns components in the column.

Center components in the column.

Fill (expand) components into the column.

Grow column width.

Group column with other columns. All columns in a group will get the same width.

Row Header

Top aligns components in the row.

Bottom aligns components in the row.

Center components in the row.

Fill (expand) components into the row.

Grow row height.

Group row with other rows. All rows in a group will get the same height.

- 19 -

JFormDesigner 3.0 Manual

In-place-editing

In-place-editing allows you to edit the text of labels and other components directly in the Design view. Simply
select a component and start typing. JFormDesigner automatically displays a text field that allows you to edit
the text.

You can also use the Space key or double-click on a component to start in-place-editing. Confirm your changes
using the Enter key, or cancel editing using the Esc key.

In-place-editing is available for all components, which support one or the properties textWithMnemonic, text
and title.

In-place-editing is also supported for the title of TitledBorder and the tab titles of JTabbedPane.

TitledBorder: double-click on the title of the TitledBorder; or select the component with the TitledBorder
and start in-place-editing as usual.

JTabbedPane: double-click on the tab title; or single-click on the tab, whose title you want to edit and start in-
place-editing as usual.

Keyboard Navigation

Keyboard navigation allows you to change the selection in the designer view using the keyboard. This allows
you for example to edit a bunch of labels using in-place-editing without having to use the mouse. You can use
the following keys:

Key Description

Up move the selection up

Down move the selection down

Left move the selection left

Right move the selection right

Home select the first component

End select the last component

Note: Keyboard navigation is currently limited to one container. You cannot move the selection to another
container using the keyboard.

- 20 -

JFormDesigner 3.0 Manual

Menu Designer

The menu designer makes it easy to create and modify menu bars and popup menus. It supports in-place-
editing menu texts and drag-and-drop menu items.

Menu bar structure

The following figure shows the structure of a menu bar. The horizontal bar on top of the image is a JMenuBar
that contains JMenu components. The JMenu contains JMenuItem, JCheckBoxMenuItem, JRadioButtonMenuItem
or Menu Separator components. To create a sub-menu, put a JMenu into a JMenu.

The component palette has a category "Menus" that contains all components necessary to create menus.

Creating menu bars

To create a menu bar:

1. add a JMenuBar to a JFrame
2. add JMenus to the JMenuBar and
3. add JMenuItems to the JMenus

Select the necessary components in the Palette and drop them to the Design view.

You can freely drag and drop the various menu components to rearrange them.

- 21 -

JFormDesigner 3.0 Manual

Creating popup menus

To create a popup menu:

1. add a JPopupMenu to the free area in the Design view and
2. add JMenuItems to the JPopupMenu

Assign popup menus to components

If you use Java 5 or later, you can assign the popup menu to a component in the properties view using the
"componentPopupMenu" property. Select the component to which you want attach the popup menu and assign
it in the Properties view. Note that you must click on the Show Advanced Properties in the toolbar of the
Properties view to see the property.

Note that JFormDesigner must run on Java 5 to use the "componentPopupMenu" property. Open the
JFormDesigner About dialog and check whether it displays "Java 1.5.x".

- 22 -

JFormDesigner 3.0 Manual

Button groups

Button groups (javax.swing.ButtonGroup) are used in combination with radio buttons to ensure that only one
radio button in a group of radio buttons is selected.

To visualize the grouping, JFormDesigner displays lines connecting the grouped buttons.

Group Buttons

To create a new button group, select the buttons you want to group, right-click on a selected button and select
Group Buttons from the popup menu.

You can extend existing button groups by selecting at least one button of the existing group and the buttons
that you want to add to that group, then right-click on a selected button and select Group Buttons from the
popup menu.

Note that the Group Buttons and Ungroup Buttons commands are only available in the context menu if the
selection contains only components, which are derived from JToggleButton (JRadioButton and JCheckBox).

Ungroup Buttons

To remove a button group, select all buttons of the group, right-click on a selected button and select Ungroup
Buttons from the popup menu.

To remove a button from a group, right-click on it and select Ungroup Buttons from the popup menu.

- 23 -

JFormDesigner 3.0 Manual

ButtonGroup object

Button groups are non-visual beans. They appear at the bottom of the Structure view and in the Design view.
JFormDesigner automatically creates and removes those objects. You can rename button group objects.

If a grouped button is selected, you can see the association to the button group in the Properties view.

- 24 -

JFormDesigner 3.0 Manual

JTabbedPane

JTabbedPane is a container component that lets the user switch between pages by clicking on a tab.

After adding a JTabbedPane to your form, it looks like this one:

To add pages, select an appropriate component (e.g. JPanel) in the palette, move the cursor over the tabs area
of the JTabbedPane and click to add it.

You can see only the components of the active tab. Click on a tab to switch to another page. To change a tab
title, double-click on a tab to in-place-edit it. You can edit other tab properties (tool tip text, icon, ...) in the
Properties view. Select a page component (e.g. JPanel) to see its tab properties.

To change the tab order, select a page component (e.g. JPanel) and drag it over the tabs to a new place. You
can also drag and drop page components in the Structure view to change its order.

- 25 -

JFormDesigner 3.0 Manual

Use an empty border to separate the page contents from the JTabbedPane border. If you are using JGoodies
Forms, it's recommended to use TABBED_DIALOG_BORDER. Otherwise use an EmptyBorder.

- 26 -

JFormDesigner 3.0 Manual

Events

Components can provide events to signal when activity occurs (e.g. button pressed or mouse moved).
JFormDesigner shows events in the Structure view and event properties in the Properties view.

IDE plug-ins: Double-click on the event in the Structure view to go to the event handler method in the Java
editor of the IDE.

Add Event Handlers

To add an event handler to a component, right-click on the component in the Design or Structure view and
select Add Event Handler from the popup menu. The events popup menu lists all available event listeners for
the selected components and is divided into three sections: preferred, normal and expert event listeners.

- 27 -

JFormDesigner 3.0 Manual

The icon in the popup menu indicates that the listener interface will be implemented (e.g.

javax.swing.ChangeListener). The icon indicates that the listener adapter class will be used (e.g.

java.awt.event.FocusAdapter for java.awt.event.FocusListener). The icons and are used when the
listener is already implemented.

After selecting an event listener from the popup menu, you can specify the name of the handler method and
whether listener methods should be passed to the handler method in following dialog.

If you add a PropertyChangeListener, you can also specify a property name (field is not visible in above
screenshot). Then the listener is added using the method addPropertyChangeListener(String
propertyName, PropertyChangeListener listener).

The "Go to handler method in Java editor" check box is only available in the IDE plug-ins.

Stand-alone: After saving the form, go to your favorite IDE and implement the body of the generated event
handler method.

If you use the Runtime Library and the Java code generator is disabled, you must implement the handler
method yourself in the target class. See documentation of method FormCreator.setTarget() in the
JFormDesigner Loader API for details.

Remove Event Handlers

To remove an event handler, select it in the Structure view and press the Del key. Or right-click on the event
handler and select Delete from the popup menu.

Change Handler Method Name

Select the event handler in the Structure view, press the F2 key and edit the name in-place in the tree. You can
also change the handler method and the "pass parameters" flag in the Properties view.

- 28 -

JFormDesigner 3.0 Manual

Palette

The component palette provides quick access to commonly used components (JavaBeans) available for adding
to forms.

The components are organized in categories. Click on a category header to expand or
collapse a category.

You can add a new component to the form in following ways:

• Select a component in the palette, move the cursor to the Design or Structure
view and click where you want to add the component.

• Select Choose Bean, enter the class name of the component in the Choose Bean
dialog, click OK, move the cursor to the Design or Structure view and click where
you want to add the component.

To add multiple instances of a component, press the Ctrl key (Mac OS X: Command key)
while clicking on the Design or Structure view.

The component palette is fully customizable. Right-click on the palette to add, edit,
remove or reorder components and categories. Or use the Palette Manager.

Toolbar commands

Palette Manager Opens the Palette Manager dialog to customize the palette.

- 29 -

JFormDesigner 3.0 Manual

Choose Bean

You can use any component that follows the JavaBean specification in JFormDesigner. Select Choose Bean in
the palette to open the Choose Bean dialog.

Search tab

On this tab you can search for classes. Enter the first few characters of the class you want to choose until it
appears in the matching classes list. Then select it in the list and click OK.

The matching classes list displays all classes that match. It is separated into up to three sections:

• Matching history: classes found in the history of last used classes. If the search field is empty, the
complete history is displayed. To delete a class from the history, select it and press the Delete key or
right-click on it an select Delete from the popup menu.

• Matching classes: classes found in the Classpath specified in the current Project.
• Matching palette: classes found in the palette.

- 30 -

JFormDesigner 3.0 Manual

JARs tab

On this tab you can select classes that are marked as JavaBean in the JAR's manifest. The provider of the
component JAR can mark some classes as JavaBean in the manifest file. Popular 3rd party component libraries
like MiG Calendar or JIDE components use this to make it easier to find the few classes, which can be used in
GUI builders, in libraries that contain hundreds of classes.

See also http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html#Per-Entry%20Attributes

Other options

The Is Container check box allows you to specify whether a bean is a container or not.

If you select Add to palette category, the component will be added to the palette category specified in the
following field. Click the New button to create a new category for your components if necessary.

Stand-alone: Use the Classpath button to specify the location of your component classes. Add your JAR files
or class folders.

IDE plug-ins: The classpath specified in the IDE project is used to locate component classes.

- 31 -

http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html#Per-Entry Attributes
http://www.jidesoft.com/
http://www.migcalendar.com/

JFormDesigner 3.0 Manual

Palette Manager

This dialog allows you to fully customize the component palette. You can add, edit, remove or reorder
components and categories.

- 32 -

JFormDesigner 3.0 Manual

Structure View

This view displays the hierarchical structure of the components in a form.

 Each component is shown in the tree with an icon, its name and
additional information like layout manager class or the text of a
label or button. The name must be unique within the form and is
used as variable name in the generated Java code.

You can edit the name of the selected component in the tree by
pressing the F2 key. Right-click on a component to invoke
commands from the context menu.

The selection in the Structure view and in the Design view is
synchronized both ways.

The tree supports multiple selection. Use the Ctrl key (Mac OS X: Command key) to add individual selections.
Use the Shift key to add contiguous selections.

The tree supports drag and drop to rearrange components. You can also add new components from the palette
to the Structure view. Besides the feedback indicator in the structure tree, JFormDesigner also displays a green
feedback figure in the Design view to show the new location.

Various overlay icons are used in the tree to indicate additional information:

Icon Description

The component is bound to a Java class. Each component can have its own (nested) class. See Nested
Classes for details.

The component has events assigned to it. The events are shown as child nodes in the tree.

The component has custom code assigned to it (see Code Generation tab in the Properties view). In
the above screenshot, the component zipField has custom code.

The variable modifier of the component is set to public. See Code Generation tab.

The variable modifier of the component is set to default.

The variable modifier of the component is set to protected.

The variable modifier of the component is set to private.

- 33 -

JFormDesigner 3.0 Manual

A property (e.g. JLabel.labelFor) of the component has a reference to a non-existing component.
This can happen if you e.g. remove a referenced JTextField. In the above screenshot, the component
phoneLabel has a invalid reference.

Toolbar commands

Expand All Expand all nodes in the structure tree.

Collapse All Collapse all nodes in the structure tree.

Hide Events If selected, hides the events from the structure tree.

- 34 -

JFormDesigner 3.0 Manual

Properties View

The Properties view displays and lets you edit the properties of the selected component(s). Select one or more
components in the Design or Structure view to see its properties. If more than one component is selected, only
properties that are in all selected components are shown.

The view consists of two tabs (at the bottom of the view).

Properties tab

The Properties tab displays the component name, component class, layout properties, client properties and
component properties. The list of component properties comes from introspection of the component class
(JavaBeans).

 By default, the Properties view displays regular properties. To see

expert properties, click on the Show Advanced Properties ()
button in the view toolbar and to see read-only properties, click the

Show read-only Properties () button.

Different font styles are used for the property names. Bold style is
used for preferred (often used) properties, plain style for normal
properties and italic style for expert properties. Read-only properties
are shown using a gray font color.

The light gray background indicates unset properties. The shown
values are the default values of the component. The white background
indicates set properties. Java code will be generated for set properties

only. Use Restore Default Value () to unset a property or Set

Value to null () from the popup menu to set a property explicitly to
null.

The left column displays the property names, the right column the property values. Click on a property value to
edit it.

You can either edit a value directly in the property table or use a custom property editor by clicking on the
ellipsis button () on the right side. The custom editor pops up in a new dialog.

The type of the editor depends on the data type of the property. JFormDesigner has built-in property editors for
all standard data types.

The globe button (), which is only available for localized forms and string properties, allows you to choose
existing strings from the resource bundle of the form.

Common properties (at the top of the table):

Property Name Description

Name The name of the component. Must be unique within the form. Used as variable name in
the generated Java code. It is also possible to specify a different variable name on the
Code Generation tab.

- 35 -

JFormDesigner 3.0 Manual

Property Name Description

Class The class name of the component. The tooltip displays the full class name and the class
hierarchy. Click on the value to morph the component class to another class (e.g.
JTextField to JTextArea).

Button Group The name of the button group assigned to the component. This property is only visible
for components derived from JToggleButton (e.g. JRadioButton and JCheckBox).

Layout Layout properties of the container component. Click on the plus sign to expand it. The
list of layout properties depends on the used layout manager. This property is only
visible for container components. Click on the value to change the layout manager.

Constraints Layout constraints properties of the component. Click on the plus sign to expand it. The
list of constraints properties depends on the layout manager of the parent component.
This property is only visible if the layout manager of the parent component uses
constraints.

Client Properties Client properties of the component. Click on the plus sign to expand it. This property is
only visible if there are client properties defined in the Client Properties preferences.

Code Generation tab

This tab displays properties related to the Java code generator.

Property Name Description

Nested Class Name The name of the generated nested Java class. See Nested Classes for details.

Variable Name The variable name of the component used in the generated Java code. By default,
it is equal to the component name.

Variable Modifiers The modifiers of the variable generated for the component. Allowed modifiers:
public, default, protected, private, static and transient. Default is
private.

Use Local Variable If true, the variable is declared as local in the initialization method. Otherwise at
class level. Default is false.

Gen. Getter Method If true, generate a public getter method for the component. Default is false.

Variable Annotations
(Java 5)

Annotations of component variable (Java 5).

Type Parameters (Java 5) Parameters of component type (Java 5). E.g. MyTypedBean<String>.

Custom Creation Code Custom code for creation of the component.

Pre-Creation Code Code included before creation of the component.

- 36 -

JFormDesigner 3.0 Manual

Property Name Description

Post-Creation Code Code included after creation of the component.

Pre-Initialization Code Code included before initialization of the component.

Post-Initialization Code Code included after initialization of the component.

This is the dialog for custom code editing:

"(form)" properties

Select the "(form)" node in the Structure view to modify special form properties:

Properties tab

Property Name Description

Set Component Names If true, invokes java.awt.Component.setName() on all components of the
form.

Code Generation tab

Property Name Description

Default Variable Modifiers The default modifiers of the variables generated for components. Allowed
modifiers: public, default, protected, private, static and transient.
Default is private.

Default Use Local Variable If true, the component variables are declared as local in the initialization
method. Otherwise at class level. Default is false.

Default Gen. Getter Method If true, generate public getter methods for components. Default is false.

Default Handler Modifiers The default modifiers used when generating event handler methods. Allowed
modifiers: public, default, protected, private, final and static. Default
is private.

- 37 -

JFormDesigner 3.0 Manual

Member Variable Prefix Prefix used for component member variables. E.g. "m_".

Use 'this' for member
variables

If enabled, the code generator inserts 'this.' before all member variables. E.g.
this.nameLabel.setText("Name:");

I18n 'getBundle' Template Template used by code generator for getting a resource bundle. Default is
ResourceBundle.getBundle(${bundleName})

I18n 'getString' Template Template used by code generator for getting a string from a resource bundle.
Default is ${bundle}.getString(${key})

I18n Key Constants Class The name of a class that contains constants for resource keys.

- 38 -

JFormDesigner 3.0 Manual

Property Editors

Property editors are used in the Properties view to edit property values.

You can either edit a value directly in the property table or use a custom property editor by clicking on the
ellipsis button () on the right side. The custom editor pops up in a new dialog.

The type of the editor depends on the data type of the property. JFormDesigner has built-in property editors for
all standard data types. Custom JavaBeans can provide their own property editors. Take a look at the API
documentation of java.beans.PropertyEditor, java.beans.PropertyDescriptor and java.beans.BeanInfo
and the JavaBeans topic for details.

Built-in property editors

JFormDesigner has built-in property editors for following data types:

• String , boolean, byte, char, double, float, int, long, short, java.lang.Boolean, java.lang.Byte,
java.lang.Character, java.lang.Double, java.lang.Float, java.lang.Integer, java.lang.Long,
java.lang.Short, java.math.BigDecimal and java.math.BigInteger

• ActionMap (javax.swing)
• Border (javax.swing)
• Color (java.awt)
• ComboBoxModel (javax.swing)
• Cursor (java.awt)
• Dimension (java.awt)
• Font (java.awt)
• Icon (javax.swing)
• Image (java.awt)
• InputMap (javax.swing)
• Insets (java.awt)
• KeyStroke (javax.swing)
• ListModel (javax.swing)
• Object (java.lang)
• Point (java.awt)
• Rectangle (java.awt)
• SpinnerModel (javax.swing)
• TableModel (javax.swing)
• TreeModel (javax.swing)

- 39 -

JFormDesigner 3.0 Manual

ActionMap (javax.swing)

This (read-only) custom editor allows you to see the actions registered for a component in its action map. The
information in the column "Key Stroke" comes from the input map of the component and shows which key
strokes are assigned to actions. The JComponent property "actionMap" is read-only. Select the Show read-
only Properties button in the Properties view toolbar to make it visible.

Border (javax.swing)

You can either select a border from the combo box in the properties table or use the custom editor.

In the custom editor you can edit all border properties. Use the combo box at the top of the dialog to choose a
border type. In the mid area of the dialog you can edit the border properties. This area is different for each
border type. At the bottom, you can see a preview of the border.

- 40 -

JFormDesigner 3.0 Manual

Following border types are supported: BevelBorder, CompoundBorder, EmptyBorder, EmptyBorder
(JGoodies), EtchedBorder, LineBorder, MatteBorder, SoftBevelBorder and TitledBorder.

Color (java.awt)

In the properties table, you can either enter RGB values, color names, system color names or Swing UIManager
color names. When using a RGB value, you can also specify the alpha value by adding a fourth number.

- 41 -

JFormDesigner 3.0 Manual

The custom editor supports various ways to specify a color. Besides RGB, you can select a color from the AWT,
System or Swing palettes.

ComboBoxModel (javax.swing)

This custom editor allows you to specify string values for a combo box.

Cursor (java.awt)

This editor allows you to choose a predefined cursor.

- 42 -

JFormDesigner 3.0 Manual

Dimension (java.awt)

Either edit the dimension in the property table or use the custom editor.

Font (java.awt)

In this custom editor you can select the font family, style and size.

- 43 -

JFormDesigner 3.0 Manual

Icon (javax.swing) and Image (java.awt)

This custom editor allows you to choose an icon. Either use an icon from the classpath, from the file system or
from the Swing UIManager (look and feel). It is recommended to use the classpath and embed your icons into
your application JAR.

InputMap (javax.swing)

This (read-only) custom editor allows you to see the key strokes registered for a component in its input map.
The information in the column "Action" comes from the action map of the component and shows which action
classes are assigned to key strokes. The JComponent property "inputMap" is read-only. Select the Show read-
only Properties button in the Properties view toolbar to make it visible.

- 44 -

JFormDesigner 3.0 Manual

Insets (java.awt)

Either edit the insets in the property table or use the custom editor.

KeyStroke (javax.swing)

In the properties table, you can enter a string representation of the keystroke. E.g. "Ctrl+C" or "Ctrl+Shift+S".

The custom editor supports two ways to specify a keystroke. Either type any key stroke combination if the
focus is in the first field or use the controls below.

The KeyStroke editor supports menu shortcut modifier key (Command key on Mac OS X, Ctrl key otherwise).

- 45 -

JFormDesigner 3.0 Manual

ListModel (javax.swing)

This custom editor allows you to specify string values for a list.

Object (java.lang)

This editor allows you to reference any (non-visual) JavaBean as a property value. Often used for
JLabel.labelFor.

Point (java.awt)

Either edit the point in the property table or use the custom editor.

- 46 -

JFormDesigner 3.0 Manual

Rectangle (java.awt)

Either edit the rectangle in the property table or use the custom editor.

SpinnerModel (javax.swing)

This custom editor allows you to specify a spinner model (used by JSpinner). Use the combo box at the top of
the dialog to choose a spinner model type (Number, Date or List). In the mid area of the dialog you can edit the
model properties. This area is different for each model type. At the bottom, you can see a test spinner where
you can test the spinner model.

- 47 -

JFormDesigner 3.0 Manual

String (java.lang)

Either edit the string in the property table or use the custom editor. Switch the "allow new-line" check box on, if
you want enter new lines.

- 48 -

JFormDesigner 3.0 Manual

TableModel (javax.swing)

This custom editor allows you to specify values for a table.

- 49 -

JFormDesigner 3.0 Manual

TreeModel (javax.swing)

This custom editor allows you to specify string values for a tree.

- 50 -

JFormDesigner 3.0 Manual

Layout Properties

Each container component that has a layout manager has layout properties. The list of layout properties
depends on the used layout manager.

Select a container component in the Design or Structure view to see its layout properties in the Properties view.

This screenshot shows layout properties (alignment, horizontal and vertical gap) of a container that has a
FlowLayout.

When you add a container component to a form, following dialog appears and you can choose the layout
manager for the new container. You can also set the layout properties in this dialog.

- 51 -

JFormDesigner 3.0 Manual

Constraints Properties

Constraints properties are related to layout managers. Some layout managers (FormLayout, TableLayout,
GridBagLayout, ...) use constraints to associate layout information to the child components of a container.

The list of constraints properties depends on the layout manager of the parent component.

Select a component in the Design or Structure view to see its constraints properties in the Properties view.

This screenshot shows constraints properties of a component in a FormLayout.

- 52 -

JFormDesigner 3.0 Manual

Client Properties

What is a client property?

Swings base class for all components, javax.swing.JComponent, provides following methods that allows you to
set and get user-defined properties:

 public final Object getClientProperty(Object key);
 public final void putClientProperty(Object key, Object value);

Some Swing components use client properties to change their behavior. E.g. for JLabel you can disable HTML
display with label.putClientProperty("html.disable", Boolean.TRUE); You can use client properties to
store any information in components. Visit Finally... Client Properties You Can Use on Ben Galbraith's Blog for a
use case.

Define client properties

You can define client properties on the Client Properties page in the Preferences dialog.

Edit client properties

If you've defined client properties, JFormDesigner shows them in the Properties view, where you can set the
values of the client properties.

- 53 -

http://weblogs.java.net/blog/javaben/archive/2006/04/finally_client.html

JFormDesigner 3.0 Manual

Error Log View

This view appears at the bottom of the main window if an exception is throw by a bean. You can see which
bean causes the problem and the stack trace of the exception. This makes it much easier to solve problems
when using your own (or 3rd party) beans.

Toolbar commands

Copy Log Copies all log records to the clipboard.

Clear Log Clears the log.

Properties Displays the properties of the selected log record in a dialog (see below).

Close Closes the Error Log view.

Double-click on a log entry to see its details:

How to fix errors

This mainly depends on the error. The problem shown in the above screenshots is easy to fix by setting
resizeWeight to a value between 0 and 1.

If the problem occurs in your own beans, use the stack trace to locate the problem and fix it in your bean's
source code. After compiling your bean, click the Refresh button in the designer toolbar (or press F5) to reload
your bean.

If you are using 3rd party beans, it is possible that you need to add additional libraries to the classpath. You
should be able to identify such a problem on the kind of exception. In this case, add the needed libraries to the
JFormDesigner classpath of the current Project, and refresh the Design view.

- 54 -

JFormDesigner 3.0 Manual

Localization

JFormDesigner provides easy-to-use and powerful localization/internationalization support:

• Externalize and internalize strings.
• Edit resource bundle strings .
• Create new locales .
• Delete locales .
• Switch locale used in Design view.
• In-place-editing strings of current locale.
• Auto-externalize strings.
• Choose existing strings .
• Updates resource keys when renaming components.
• Copies resource strings when copying components.
• Removes resource strings when deleting components.
• Localization preferences .
• Fully integrated in undo/redo.

The locales combo box in the toolbar allows you to select the locale used in the Design, Structure and
Properties views. If you in-place-edit a localized string in the Design view, you change it in the current locale. A
small globe in front of property values in the Properties view indicates that the string is localized (stored in a
properties file).

- 55 -

JFormDesigner 3.0 Manual

Create a new localized form

When creating a new form, you can specify that JFormDesigner should put all strings into a resource bundle
(.properties file). In the New Form dialog select the Store strings in resource bundle check box, specify a
resource bundle name and a prefix for generated keys. If Auto-externalize strings is selected, then
JFormDesigner automatically puts all new strings into the properties file (auto-externalize). E.g. when you add
a JLabel to the form and change the "text" and "toolTipText" properties, both strings will be put into the
properties file.

To localize existing forms use Externalize Strings.

- 56 -

JFormDesigner 3.0 Manual

Edit localization settings and resource bundle strings

To edit localization settings and resource bundle strings, select Form > Localize from the main menu or click
the Localize button in the toolbar. Here you can create or delete locales and edit strings. The light gray color
used to draw the string "Name:" in the table column "German" indicates that the string is inherited from a
parent locale.

The Resource bundle name field is used to locate the properties files within the Source Folders of the current
Project. Use the Browse button to choose a resource bundle (.properties file).

In the Prefix for generated keys field you can specify a prefix for generated resource bundle keys. The
format for generated keys is "<prefix>.<componentName>.<propertyName>". You can change the separator
('.') in the Localization preferences.

If the Auto-externalize strings check box is selected, then JFormDesigner automatically puts all new strings
into the properties file. E.g. when you add a JLabel to the form and change the "text" and "toolTipText"
properties, both strings will be put into the properties file. You can exclude properties from externalization in
the Localization preferences.

- 57 -

JFormDesigner 3.0 Manual

Create new locale

To create a new locale, either select Form > New Locale from the main menu, New Locale form the toobar
or click the New Locale button in the Localize dialog. Select a language and an optional country. You can
copy strings from an existing locale into the new locale, but JFormDesigner fully supports inheritance in the
same way as specified by java.util.ResourceBundle. E.g. if a message is not in locale "de_AT" then it will be
loaded from locale "de".

Delete a locale

To delete an existing locale, either select Form > Delete Locale from the main menu, Delete Locale form the
toobar or click the Delete Locale button in the Localize dialog. Select the locale to delete.

- 58 -

JFormDesigner 3.0 Manual

Externalize strings

Externalizing allows you to move strings from a .jfd file to a .properties file. If you want localize existing forms,
start here.

Select Form > Externalize Strings from the main menu or Externalize Strings from the toolbar, specify the
resource bundle name, the prefix for generated keys and select/deselect the strings to externalize. You can
exclude properties from externalization in the Localization preferences.

You can also externalize and internalize properties in the Properties view.

- 59 -

JFormDesigner 3.0 Manual

Internalize strings

Internalizing allows you to move strings from a .properties file to a .jfd file.

Select Form > Internalize Strings from the main menu, specify the locale to internalize from and
select/deselect the strings to internalize. If you internalize all strings, JFormDesigner asks you whether you
want to disable localization for the form.

- 60 -

JFormDesigner 3.0 Manual

Choose existing strings

The globe button () in the Properties view, which is only available for localized forms and string properties,
allows you to choose existing strings from the resource bundle of the form.

In the Choose Key dialog you can search for keys and/or values. Then select a key in the table and press OK
to use its value in the form.

- 61 -

JFormDesigner 3.0 Manual

Projects

Stand-alone edition only. The IDE plug-ins use the source folders and classpath from the IDE projects.

Projects allow you to store project specific options in project files. You can create new projects or open existing
projects using the menubar or toolbar.

When you start JFormDesigner the first time, it creates and opens a default project named
DefaultProject.jfdproj in the folder ${user.home}/.jformdesigner, where ${user.home} is your home directory.
You can see the value of ${user.home} in the About dialog on the System tab.

You can use the default project, but it is recommended to create an own JFormDesigner project in your project
root folder. Then you can commit the JFormDesigner project file into a version control system and reuse it on
other computers. Paths in the project file are stored relative to the location of the project file. Project files have
the extension .jfdproj

Pages:

• General
• Source Folders
• Classpath

General

When creating a new project, you can specify a project name and the location where to store the project file.

- 62 -

JFormDesigner 3.0 Manual

Source Folders

On this page, you can specify the locations of your Java source folders. Source folders are the root of packages
containing .java files and are used find resource bundles for localization and are also used by the Java code
generator to generate package statements.

If the folders list is focused, you can use the Insert key to add folders or the Delete key to delete selected
folders.

Classpath

To use your custom components (JavaBeans), JFormDesigner needs to know, from where to load the JavaBean
classes. Specify the locations of your custom JavaBeans on this page. You can add JAR files or folders
containing .class files.

- 63 -

JFormDesigner 3.0 Manual

Preferences

This dialog is used to set user preferences.

Stand-alone: Select Window > Preferences from the menu to open this dialog.

Eclipse plug-in: The JFormDesigner preferences are fully integrated into the Eclipse preferences dialog. Select
Window > Preferences from the menu to open it and then expand the node "JFormDesigner" in the tree.

IntelliJ IDEA plug-in: IntelliJ IDEA uses the term "Settings" instead of "Preferences". The JFormDesigner
preferences are fully integrated into the IntelliJ IDEA settings dialog. Select File > Settings from the menu to
open it and then click the icon named "JFormDesigner".

Pages:

• FormLayout (JGoodies)
• null Layout
• Localization
• Look and Feels
• Java Code Generator

• Templates
• Layout Managers
• Localization

• Client Properties
• BeanInfo Search Path
• Squint Test

Import and export preferences

Stand-alone: You can use the Import button to import preferences from a file and the Export button to
export preferences to a file.

Eclipse plug-in: Use the menu commands File > Import and File > Export to import and export
preferences.

IntelliJ IDEA plug-in: Use the menu commands File > Import Settings and File > Export Settings to
import and export settings.

Note: Each IDE uses its own file format for preferences. So it is not possible to transfer preferences between
the different JFormDesigner editions.

- 64 -

JFormDesigner 3.0 Manual

FormLayout (JGoodies)

On this page, you can specify FormLayout related options.

Option Description Default

IntelliGap If enabled, JFormDesigner automatically inserts/removes gap
columns/rows.

On

JGoodies Forms
version

Required JGoodies Forms version for the created forms.
JGoodies Forms 1.0.3 and later require Java 1.4 or later.
JGoodies Forms 1.0.2 is the last version that supports Java 1.3.

1.0.3 or later

Column/row
templates for new
columns/rows

Here you can specify the column and row templates that should
be used when new columns or rows are inserted.

 Column The column template used for new columns. default

 Column gap The column template used for new gap columns. label component gap

 Row The row template used for new rows. default

 Row gap The row template used for new gap rows. line gap

Custom column/row
templates

If the predefined templates does not fit to your needs, you can
define your own here.

- 65 -

JFormDesigner 3.0 Manual

Custom column/row templates

Option Description

Display name The display name is used within JFormDesigner whenever the template is shown in combo
boxes or popup menus.

Identifier The (unique) identifier is stored in form files. Choose a short string. Only letters and digits
are allowed.

Use for Specifies whether the template should be used for columns, rows or both. Also specifies
whether it represents a gap column/row.

Default alignment The default alignment of the components within a column/row. Used if the value of the
component constraint properties "h align" or "v align" are set to DEFAULT.

Size The width of a column or height of a row. You can use default, preferred or minimum
component size. Or a constant size. It is also possible to specify a minimum and a
maximum size. Note that the maximum size does not limit the column/row size if the
column/row can grow (see resize behavior).

Resize behavior The resize weight of the column/row.

Java code Optional Java code used by the Java code generator. Useful if you have factory classes for
ColumnSpecs and RowSpecs.

- 66 -

JFormDesigner 3.0 Manual

null Layout

On this page, you can specify null layout related options.

Option Description Default

Snap to grid If enabled, snap to the grid specified below when moving or resizing a component in
null layout.

On

Grid X step The horizontal step size of the grid. 5

Grid Y step The vertical step size of the grid. 5

- 67 -

JFormDesigner 3.0 Manual

Localization

On this page, you can specify localization related options.

Option Description Default

Rename resource
keys when renaming
components

If enabled, auto-rename resource keys when renaming components
and the resource key contains the old component name.

On

Copy localized
messages when
copying components

If enabled, duplicate localized strings in all locales when copying
components.

On

Delete localized
messages when
deleting components

If enabled, auto-delete localized strings, that were used by the
deleted components, from all locales.

On

Delete localized
messages when
internalizing strings

If enabled, auto-delete localized strings, that were internalized, from
all locales.

On

Insert new messages Specifies where new messages will be inserted into properties files.
"next to similar keys" inserts new messages next to other similar
keys so that messages that belong together are automatically at the
same location in the properties file. "at the end of the properties file"
always appends new messages to the end of the properties file.

next to similar
keys
(ascending
order)

Separator used for
generated keys

Separator used when generating a resource key. '.'

Template for
properties files

Template used when creating new properties files.

- 68 -

JFormDesigner 3.0 Manual

Exclude properties
from externalization

Specify properties that should be excluded from externalization.
Useful when using auto-externalization to ensure that some string
property values stay in the Java code.

If the list is focused, you can use the Insert key to add a property or
the Delete key to delete selected properties.

Look and Feels

On this page, you can add Swing look and feels for use in the Design view.

Note: Because Swing is not designed to use two look and feels at the same time (application and Design view),
it can not guaranteed that each look and feel works without problems.

If the look and feels list is focused, you can use the Insert key to add a look and feel or the Delete key to
delete selected look and feels.

- 69 -

JFormDesigner 3.0 Manual

Option Description

Jar path Full path name of the jar file that contains the look and feel classes. Use the Browse button to
select a jar.

Name Name of the look and feel used in the look and feel combo box in the Main Toolbar.

Class name Class name of the look and feel class (derived from javax.swing.LookAndFeel).

License code License code for the commercial Alloy Look and Feel.

Java Code Generator

On this page, you can turn off the Java code generator and specify other code generation options.

Option Description Default

Generate Java
source code

If enabled, JFormDesigner generates Java source code when you save a
form.

On

Source
compatibility

Specifies the compatibility of the generated source code. Besides
generating Java 1.x compatible source code, JFormDesigner can also use
Java 5 (or later) features in the generated source code (e.g. auto-boxing,
@Override, etc).

Stand-
alone: use
JRE version
IDE plug-
ins: use
project
setting

Explicit imports If enabled, the code generator adds explicit import statements (without
'*') for used classes.

Off

- 70 -

http://www.incors.com/

JFormDesigner 3.0 Manual

Container blocks If enabled, the code generator puts the initialization code for each
container into a block (enclosed in curly braces).

On

Comments If enabled, the code generator puts a comment line above the initialization
code for each component.

On

Set component
names

If enabled, the code generator inserts java.awt.Component.setName()
statements for all components of the form.

Off

Eclipse non-nls
tags (//$NON-
NLS-n$)

If enabled, the code generator appends non-nls comments to lines
containing strings. These comments are used by the Eclipse IDE to denote
strings that should not be externalized.

Off

Netbeans no-i18n
tags (//NOI18N)

If enabled, the code generator appends non-nls comments to lines
containing strings. These comments are used by the Netbeans IDE to
denote strings that should not be externalized.

Off

Use 'this' for
member variables

If enabled, the code generator inserts 'this.' before all member variables.
E.g. this.nameLabel.setText("Name:");

Off

Member variables
prefix

Prefix used for component member variables. E.g. "m_".

Class modifiers Class modifiers used when generating a new class. Allowed modifiers:
public, default, abstract and final.

public

Nested class
modifiers

Class modifiers used when generating a new nested class. Allowed
modifiers: public, default, protected, private, abstract, final and
static.

private

You can set additional options per form in the "(form)" properties.

Templates (Java Code Generator)

This page contains templates that are used by the code generator when generating a new class. See Code
Templates for details about templates.

- 71 -

JFormDesigner 3.0 Manual

New: Create a new template for a specific superclass.
Edit: Edit the superclass of the selected user-defined template.
Remove: Remove the selected template. Only allowed for user-defined templates.
Reset: Reset the selected predefined template to the default.
Insert Variable: Insert a variable at the current cursor location into the selected template.

Layout Managers (Java Code Generator)

On this page, you can specify code generation options for some layout managers.

Option Description Default

Use PanelBuilder in
generated code

If enabled, the PanelBuilder class of JGoodies Forms is used for
FormLayout.

Off

Use empty
GridBagConstraints
constructor

If enabled, the empty GridBagConstraints constructor is used in the
generated code, which is necessary for Java 1.0 and 1.1 compatibility.
Since Java 1.2, GridBagConstraints has a constructor with parameters,
which is used by default.

Off

- 72 -

JFormDesigner 3.0 Manual

Localization (Java Code Generator)

On this page, you can specify code generation options for localization.

Option Description Default

'getBundle'
template

Template used by code generator for getting a
resource bundle.

ResourceBundle.getBundle(${bundle
Name})

'getString'
template

Template used by code generator for getting a
string from a resource bundle.

${bundle}.getString(${key})

- 73 -

JFormDesigner 3.0 Manual

Client Properties

On this page, you can can define client properties, which can be set in the Properties view.

If the client properties list is focused, you can use the Insert key to add a client property or the Delete key to
delete selected client properties.

- 74 -

JFormDesigner 3.0 Manual

Option Description

Key The key that identifies the client property.

Component
class

The component class to which the client property belongs. E.g. if set to javax.swing.JButton,
then the client property is shown in the Properties view for buttons and for subclasses of
JButton. If not specified, the client property is shown for all components.

Value type The type of the client property value. You can select one of the common types (String,
Boolean, Integer, etc) from the combo box or enter the class name of a custom type.

Predefined
values

If the value type is java.lang.String, then you can specify predefined values for the client
property. When editing the client property in the Properties view, a combo box that contains
these values is shown. The combo box is editable by default. Select the "Allow only predefined
values" check box to make the combo box not-editable.

Property
editor class

Optional class name of a property editor that should be used when editing the client property
in the Properties view.

BeanInfo Search Path

On this page, you can specify package names that will be used for finding BeanInfo classes and property
editors.

Option Description

BeanInfo
search path

Package names that will be used for finding BeanInfo classes. Only necessary if the BeanInfo
class is not in the same package as the component class to which it belongs. See
java.beans.Introspector and Introspector.setBeanInfoSearchPath() for details.

Property
editor search
path

Package names that will be used for finding property editors. Only necessary if the property
editor is not in the same package as the property type to which it belongs. See
java.beans.PropertyEditorManager and PropertyEditorManager.setEditorSearchPath() for
details.

- 75 -

http://java.sun.com/j2se/1.5.0/docs/api/java/beans/PropertyEditorManager.html#setEditorSearchPath(java.lang.String%5B%5D)
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/PropertyEditorManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/Introspector.html#setBeanInfoSearchPath(java.lang.String%5B%5D)
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/Introspector.html

JFormDesigner 3.0 Manual

Squint Test

The page allows you to specify the squint level for the squint test (menu View > Squint Test).

- 76 -

JFormDesigner 3.0 Manual

IDE Integrations

JFormDesigner is available as stand-alone application and as plug-ins for various IDEs. The IDE plug-ins
completely integrate JFormDesigner into the IDEs.

• Eclipse plug-in
• IntelliJ IDEA plug-in
• Other IDEs

- 77 -

JFormDesigner 3.0 Manual

Eclipse plug-in

This plug-in integrates JFormDesigner into Eclipse.

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

• Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within Eclipse. No need
to swtich between applications.

• Uses the source folders and classpath of the current Eclipse project. No need to specify them twice.
• The Java code generator updates the .java file in-memory on each change in the designer. You can

design forms and edit its source code without the need to save them (as necessary when using
JFormDesigner stand-alone edition).

• Folding of generated GUI code in Java editor.
• Go to event handler method in Java editor. Double-click on the event in the Structure view to go to the

event handler method in the Java editor of Eclipse.
• Two-way synchronization of localized strings in designer and in properties file editors. Changing

localized strings in the designer immedately updates the .properties file in-memory and changing the
.properties file updates the designer.

• Copy needed libraries (JGoodies Forms, TableLayout, etc) to the project and add them to the classpath
of the current Eclipse project. Optionally include source code and javadoc.

• Integrated with Eclipse's Version Control Systems.
• Integrated into refactoring: Copy, rename, move or delete .jfd files when coping, renaming, moving or

deleting .java files.

- 78 -

http://www.eclipse.org/

JFormDesigner 3.0 Manual

User interface

The screenshot below shows the Eclipse main window editing a JFormDesigner form. JFormDesigner adds the
menu Form to the main menu.

A JFormDesigner editor consists of:

• Toolbar : Located at top of the editor area.
• Palette : Located at the left side.
• Design View : Located at the center.
• Structure View : Located in Eclipse's Outline view.
• Properties View : Located in Eclipse's Properties view.
• Error Log View : Automatically opens on errors in a view at the bottom. This view is minimized in the

above screenshot.

- 79 -

JFormDesigner 3.0 Manual

Creating new forms

You can create new forms in Eclipse's Package Explorer view. First select the destination package or folder,
then invoke Eclipse's New command and choose JFormDesigner Form.

- 80 -

JFormDesigner 3.0 Manual

In the New JFormDesigner Form dialog, enter the form name (which is also used as class name), choose a
superclass, a layout manager and set localization options.

After clicking OK, the form will be created and opened.

Open forms for editing

You can open existing forms the same way as opening any other file in Eclipse. Locate it in Eclipse's Package
Explorer view and double-click it.

Go to Java code

JFormDesigner adds a button to its toolbar that enables you to switch quickly from a JFormDesigner form editor
to its Java editor.

- 81 -

JFormDesigner 3.0 Manual

Code folding

To move the generated code out of the way, JFormDesigner folds it in the Java editor.

Convert Netbeans and IntelliJ IDEA forms

You can convert existing Netbeans and IntelliJ IDEA forms to JFormDesigner forms. Right-click on the form file
and select Convert to JFormDesigner Form.

Note: When converting an IntelliJ IDEA form, JFormDesigner inserts its own generated GUI code into the
existing Java class, but does not remove IDEA's GUI code. You have to remove IDEA's component variables and
initialization code yourself.

Preferences

The JFormDesigner preferences are fully integrated into the Eclipse preferences dialog. Select Window >
Preferences from the menu to open it and then expand the node "JFormDesigner" in the tree. See Preferences
for details.

- 82 -

JFormDesigner 3.0 Manual

IntelliJ IDEA plug-in

This plug-in integrates JFormDesigner into Jetbrains IntelliJ IDEA.

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

• Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within IntelliJ IDEA. No
need to swtich between applications.

• Uses the source folders and classpath of the current IntelliJ IDEA project/module. No need to specify
them twice.

• The Java code generator updates the .java file in-memory on each change in the designer. You can
design forms and edit its source code without the need to save them (as necessary when using
JFormDesigner stand-alone edition).

• Folding of generated GUI code in Java editor.
• Go to event handler method in Java editor. Double-click on the event in the Structure view to go to the

event handler method in the Java editor of IntelliJ IDEA.
• Two-way synchronization of localized strings in designer and in properties file editors. Changing

localized strings in the designer immedately updates the .properties file in-memory and changing the
.properties file updates the designer.

• Copy needed libraries (JGoodies Forms, TableLayout, etc) to the project and add them to the classpath
of the current IntelliJ IDEA project/module. Optionally include source code and javadoc.

• Assign shortcut keys to most JFormDesigner commands in IntelliJ IDEA's keymap settings.
• Integrated with IntelliJ IDEA's Version Control Systems.

User interface

The screenshot below shows the IntelliJ IDEA main window editing a JFormDesigner form.

- 83 -

http://www.jetbrains.com/idea/
http://www.jetbrains.com/

JFormDesigner 3.0 Manual

A JFormDesigner editor consists of:

• Toolbar : Located at top of the editor area.
• Palette : Located at the left side.
• Design View : Located at the center.
• Structure View : Located at the upper right. You can hide this view in the editor and show it instead in

IntelliJ IDEA's Structure tool window by unselecting Show Structure in Editor ().
• Properties View : Located at the lower right.
• Error Log View : Automatically opens on errors in a tool window at the bottom. This view is not visible in

the above screenshot.

Creating new forms

You can create new forms in any of IntelliJ IDEA's project views. First select the destination package or folder,
then invoke IDEA's New command and choose JFormDesigner Form.

- 84 -

JFormDesigner 3.0 Manual

In the New JFormDesigner Form dialog, enter the form name (which is also used as class name), choose a
superclass, a layout manager and set localization options.

After clicking OK, the form will be created and opened.

Open forms for editing

You can open existing forms the same way as opening any other file in IntelliJ IDEA. Locate it in any of IDEA's
project views and double-click it.

- 85 -

JFormDesigner 3.0 Manual

Go to Java code / go to form

JFormDesigner adds a button to IntelliJ IDEA's main toolbar that enables you to switch quickly from a
JFormDesigner form editor to its Java editor and vice versa. If a form editor is active, then the button is named

Go to Java code (). If a Java editor is active, then it is named Go to JFormDesigner form (). You can
also use Ctrl+Shift+D.

Code folding

To move the generated code out of the way, JFormDesigner folds it in the Java editor.

Convert IntelliJ IDEA and Netbeans forms

You can convert existing IntelliJ IDEA and Netbeans forms to JFormDesigner forms. Right-click on the form file
and select Convert to JFormDesigner Form.

Note: When converting an IntelliJ IDEA form, JFormDesigner inserts its own generated GUI code into the
existing Java class, but does not remove IDEA's GUI code. You have to remove IDEA's component variables and

- 86 -

JFormDesigner 3.0 Manual

initialization code yourself.

Settings

JFormDesigner uses the term "Preferences" instead of IntelliJ IDEA's "Settings". The JFormDesigner preferences
are fully integrated into the IntelliJ IDEA settings dialog. Select File > Settings from the menu to open it and
then click the icon named "JFormDesigner". See Preferences for details.

Keyboard shortcuts

You can assign shortcut keys to most JFormDesigner commands in IntelliJ IDEA's keymap settings dialog.
Select File > Settings > Keymap to open it. In the actions tree expand All Actions > Plug-ins >
JFormDesigner.

- 87 -

JFormDesigner 3.0 Manual

Other IDEs

If there is no JFormDesigner plug-in for your favorite IDE, you can use the stand-alone edition of
JFormDesigner side by side with your IDE.

IDE plug-ins for JBuilder, JDeveloper and Netbeans are planed for a future release.

IDE interworking

Care must be taken because you edit the Java source in the IDE and JFormDesigner also modifies the Java
source file when generating code for the form. As long as you follow the following rule, you will never have a
problem:

Save the Java file in the IDE before saving the form in JFormDesigner.

Your IDE will recognize that the Java file was modified outside of the IDE and will reload it. Some IDEs ask the
user before reloading files, other IDEs silently reload files.

If you have not saved the Java file in the IDE, then you should prevent the IDE from reloading it. In this case
save the Java file in the IDE and then use Generate Java Code in JFormDesigner.

JFormDesigner generates Java code when you either Save the form or select Generate Java Code.
JFormDesigner does not hold a copy of the Java source in memory. Every time JFormDesigner generates Java
code, it first reads the Java source file, parses it, updates it and writes it back to the disk.

- 88 -

JFormDesigner 3.0 Manual

Layout Managers

Layout managers are an essential part of Swing forms. They lay out components within a container.
JFormDesigner provides support for following layout managers:

• BorderLayout
• BoxLayout
• CardLayout
• FlowLayout
• FormLayout (JGoodies)
• GridBagLayout
• GridLayout
• IntelliJ IDEA GridLayout
• null Layout
• TableLayout

How to choose a layout manager?

For "normal" forms use one of the grid based layout managers FormLayout, TableLayout or GridBagLayout.
Each has its advantages and disadvantages. FormLayout and TableLayout are open source and require that you
ship an additional library with your application.

• FormLayout has the most features (dialog units, column/row alignment, column/row grouping), but
may have problems if a component span multiple columns or rows and can not handle right-to-left
component orientation.

• TableLayout does not have these limitations, but has fewer features than FormLayout.
• GridBagLayout is the weakest of these three layout managers, but JFormDesigner hides its complexity

and adds additional features like gaps. Use GridBagLayout if you cannot use FormLayout or
TableLayout.

For button bars use FormLayout, TableLayout, GridBagLayout or FlowLayout.

To layout a main window, use BorderLayout. Place the toolbar to the north, the status bar to the south and the
content to the center.

For toolbars use JToolBar, which has its own layout manager (based on BoxLayout).

For radio button groups, BoxLayout may be a good choice. Mainly because JRadioButton has a gap between its
text and its border and therefore the gaps provided by FormLayout, TableLayout and GridBagLayout are not
necessary.

- 89 -

JFormDesigner 3.0 Manual

Change layout manager

You can change the layout manager at any time. Either in the Properties view or by right-clicking on a container
in the Design or Structure view and selecting the new layout manager from the popup menu.

- 90 -

JFormDesigner 3.0 Manual

BorderLayout

The border layout manager places components in up to five areas: center, north, south, east and west. Each
area can contain only one component.

The components are laid out according to their preferred sizes. The north and south components may be
stretched horizontally. The east and west components may be stretched vertically. The center component may
be stretched horizontally and vertically to fill any space left over.

BorderLayout is part of the standard Java distribution.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

horizontal gap The horizontal gap between components. Default is 0.

vertical gap The vertical gap between components. Default is 0.

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property Name Description

constraints Specifies where the component will be placed. Possible values: CENTER, NORTH, SOUTH,
EAST and WEST.

- 91 -

JFormDesigner 3.0 Manual

BoxLayout

The box layout manager places components either vertically or horizontally. The components will not wrap as in
FlowLayout.

This layout manager is used rarely. Take a look at the BoxLayout API documentation for more details about it.

BoxLayout is part of the standard Java distribution.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

axis The axis to lay out components along. Possible values: X_AXIS, Y_AXIS, LINE_AXIS and
PAGE_AXIS.

- 92 -

JFormDesigner 3.0 Manual

CardLayout

The card layout manager treats each component in the container as a card. Only one card is visible at a time.
The container acts as a stack of cards. The first component added to a CardLayout object is the visible
component when the container is first displayed.

CardLayout is part of the standard Java distribution.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

horizontal gap The horizontal gap at the left and right edges. Default is 0.

vertical gap The vertical gap at the top and bottom edges. Default is 0.

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property Name Description

Card Name Identifier that can be used to make a card visible. See API documentation for
CardLayout.show(Container, String).

- 93 -

JFormDesigner 3.0 Manual

FlowLayout

The flow layout manager arranges components in a row from left to right, starting a new row if no more
components fit into a row. Flow layouts are typically used to arrange buttons in a panel.

FlowLayout is part of the standard Java distribution.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

alignment The alignment of the layout. Possible values: LEFT, RIGHT, LEADING and TRAILING.
Default is CENTER.

horizontal gap The horizontal gap between components and between the component and the border of
the container. Default is 5.

vertical gap The vertical gap between components and between the component and the border of the
container. Default is 5.

- 94 -

JFormDesigner 3.0 Manual

FormLayout (JGoodies)

FormLayout is a powerful, flexible and precise general purpose layout manager. It places components in a grid
of columns and rows, allowing specified components to span multiple columns or rows. Not all columns/rows
necessarily have the same width/height.

Unlike other grid based layout managers, FormLayout uses 1-based column/row indices. And it uses "real"
columns/rows as gaps. Therefore the unusual column/row numbers in the above screenshot. Using gap
columns/rows has the advantage that you can give gaps different sizes.

Use the column and row headers to insert or delete columns/rows and change column/row properties.
JFormDesigner automatically adds/removes gap columns if you add/remove a column/row.

Compared to other layout managers, FormLayout provides following outstanding features:

• Default alignment of components in a column/row.
• Specification of minimum and maximum column width or row height.
• Supports different units: Dialog units, Pixel, Point, Millimeter, Centimeter and Inch. Especially Dialog

units are very useful to create layouts that scale with the screen resolution.
• Column/row templates .
• Column/row grouping .

FormLayout is open source and not part of the standard Java distribution. You must ship an additional
library with your application. JFormDesigner includes forms-1.x.x.jar, forms-1.x.x-javadoc.zip and
forms-1.x.x-src.zip in its redist folder. For more documentation and tutorials, visit forms.dev.java.net.

IDE plug-ins: If you use FormLayout the first time, the JFormDesigner IDE plug-in ask you whether it
should copy the required library (and its source code and documentation) to the IDE project and add it to
the classpath of the IDE project.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

columnSpecs Comma separated encoded column specifications. This property is for experts only. Use the
column header instead of editing this property.

rowSpecs Comma separated encoded row specifications. This property is for experts only. Use the
row headers instead of editing this property.

- 95 -

http://forms.dev.java.net/

JFormDesigner 3.0 Manual

Column/row properties

Each column and row has its own properties. Use the column and row headers to change column/row
properties.

Property Name Description

Column/Row The index of the column/row. Use the arrow buttons (or Alt+Left, Alt+Right, Alt+Up,
Alt+Down keys) to edit the properties of the previous or next column/row.

Template FormLayout provides several predefined templates for columns and rows. Here you can
choose one.

Specification The column/row specification. This is a string representation of the options below.

Default alignment The default alignment of the components within a column/row. Used if the value of the
component constraint properties "h align" or "v align" are set to DEFAULT.

Size The width of a column or height of a row. You can use default, preferred or minimum
component size. Or a constant size. It is also possible to specify a minimum and a
maximum size. Note that the maximum size does not limit the column/row size if the
column/row can grow (see resize behavior).

Resize behavior The resize weight of the column/row.

Grouping See column/row grouping for details.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

- 96 -

JFormDesigner 3.0 Manual

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property
Name

Description

grid x Specifies the component's horizontal grid origin (column index).

grid y Specifies the component's vertical grid origin (row index).

grid width Specifies the component's horizontal grid extend (number of columns). Default is 1.

grid height Specifies the component's vertical grid extend (number of rows). Default is 1.

h align The horizontal alignment of the component within its cell. Possible values: DEFAULT, LEFT,
CENTER, RIGHT and FILL. Default is DEFAULT.

v align The vertical alignment of the component within its cell. Possible values: DEFAULT, TOP,
CENTER, BOTTOM and FILL. Default is DEFAULT.

insets Specifies the external padding of the component, the minimum amount of space between the
component and the edges of its display area. Default is [0,0,0,0].
Note that the insets do not increase the column width or row height (in contrast to the
GridBagConstraints.insets).

Tip: The component context menu allows you to alter the alignment for multi-selections.

- 97 -

JFormDesigner 3.0 Manual

Column/Row Templates

FormLayout provides several predefined templates for columns and rows. You can also define custom
column/row templates in the Preferences dialog.

Column templates

Name Description Gap

default Determines the column width by computing the maximum of all column
component preferred widths. If there is not enough space in the container, the
column can shrink to the minimum width.

no

preferred Determines the column width by computing the maximum of all column
component preferred widths.

no

minimum Determines the column width by computing the maximum of all column
component minimum widths.

no

related gap A logical horizontal gap between two related components. For example the OK
and Cancel buttons are considered related.

yes

unrelated gap A logical horizontal gap between two unrelated components. yes

label component gap A logical horizontal gap between a label and an associated component. yes

glue Has an initial width of 0 pixels and grows. Useful to describe glue columns that
fill the space between other columns.

yes

button A logical horizontal column for a fixed size button. no

growing button A logical horizontal column for a growing button. no

Row templates

Name Description Gap

default Determines the row height by computing the maximum of all row component
preferred heights. If there is not enough space in the container, the row can shrink
to the minimum height.

no

preferred Determines the row height by computing the maximum of all row component
preferred heights.

no

minimum Determines the row height by computing the maximum of all row component
minimum heights.

no

related gap A logical vertical gap between two related components. yes

unrelated gap A logical vertical gap between two unrelated components. yes

narrow line gap A logical vertical narrow gap between two rows. Useful if the vertical space is
scarce or if an individual vertical gap shall be smaller than the default line gap.

yes

line gap A logical vertical default gap between two rows. A little bit larger than the narrow
line gap.

yes

paragraph gap A logical vertical default gap between two paragraphs in the layout grid. This gap
is larger than the default line gap.

yes

glue Has an initial height of 0 pixels and grows. Useful to describe glue rows that fill the
space between other rows.

yes

- 98 -

JFormDesigner 3.0 Manual

Column/Row Groups

Column and row groups are used to specify that a set of columns or rows will get the same width or height.
This is an essential feature for symmetric, and more generally, balanced design.

In the above example, columns [1 and 5] and columns [3 and 7] have the same width.

To visualize the grouping, JFormDesigner displays lines connecting the grouped columns/rows near to the
column and row headers.

Group columns/rows

To create a new group, select the columns/rows you want to group in the header, right-click on a selected
column/row in the header and select Group from the popup menu.

Note that selected gap columns/rows will be ignored when grouping.

- 99 -

JFormDesigner 3.0 Manual

You can extend existing groups by selecting at least one column/row of the existing group and the
columns/rows that you want to add to that group, then right-click on a selected column/row and select Group
from the popup menu.

Ungroup columns/lines

To remove a group, select all columns/rows of the group, right-click on a selected column/row and select
Ungroup from the popup menu.

To remove a column/row from a group, right-click on it and select Ungroup from the popup menu.

Group IDs

A unique group ID identifies each group. When using the header context menu to group/ungroup, you don't
have to care about those IDs. JFormDesigner manages the group IDs automatically.

However it is possible to edit the group ID in the Column/row properties dialog.

- 100 -

JFormDesigner 3.0 Manual

GridBagLayout

The grid bag layout manager places components in a grid of columns and rows, allowing specified components
to span multiple columns or rows. Not all columns/rows necessarily have the same width/height. Essentially,
GridBagLayout places components in rectangles (cells) in a grid, and then uses the components' preferred sizes
to determine how big the cells should be.

Use the column and row headers to insert or delete columns/rows and change column/row properties.

GridBagLayout is part of the standard Java distribution.

Extensions

JFormDesigner extends the original GridBagLayout with following features:

• Horizontal and vertical gaps
Simply specify the gap size and JFormDesigner automatically computes the
GridBagConstraints.insets for all components. This makes designing a form with consistent gaps
using GridBagLayout much easier. No longer wrestling with GridBagConstraints.insets.
With gaps: Without gaps:

• Left/top layout alignment

The pure GridBagLayout centers the layout within the container if there is enough space. JFormDesigner
easily allows you to fix this problem by switching on two options: align left and align top.
With layout alignment: Without layout alignment:

• Default component alignment

Allows you to specify a default alignment for components within columns/rows. This is very useful for
columns with right aligned labels because you specify the alignment only once for the column and all
added labels will automatically aligned to the right.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

horizontal gap The horizontal gap between components. Default is 5.

vertical gap The vertical gap between components. Default is 5.

align left If true, aligns the layout to the left side of the container. If false, then the layout is
centered horizontally. Default is true.

- 101 -

JFormDesigner 3.0 Manual

align top If true, aligns the layout to the top side of the container. If false, then the layout is
centered vertically. Default is true.

These four properties are JFormDesigner extensions to the original GridBagLayout. However, no additional
library is required.

Column/row properties

Each column and row has its own properties. Use the column and row headers to change column/row
properties.

Property Name Description

Column/Row The index of the column/row. Use the arrow buttons (or Alt+Left, Alt+Right, Alt+Up,
Alt+Down keys) to edit the properties of the previous or next column/row.

Default alignment The default alignment of the components within a column/row. Used if the value of the
constraints properties "h align" or "v align" is DEFAULT.

Size The minimum width of a column or height of a row.

Resize behavior The resize weight of the column/row.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property
Name

Description

grid x Specifies the component's horizontal grid origin (column index).

grid y Specifies the component's vertical grid origin (row index).

grid width Specifies the component's horizontal grid extend (number of columns). Default is 1.

grid height Specifies the component's vertical grid extend (number of rows). Default is 1.

- 102 -

JFormDesigner 3.0 Manual

Property
Name

Description

h align The horizontal alignment of the component within its cell. Possible values: DEFAULT, LEFT,
CENTER, RIGHT and FILL. Default is DEFAULT.

v align The vertical alignment of the component within its cell. Possible values: DEFAULT, TOP,
CENTER, BOTTOM and FILL. Default is DEFAULT.

weight x Specifies how to distribute extra horizontal space. Default is 0.0.

weight y Specifies how to distribute extra vertical space. Default is 0.0.

insets Specifies the external padding of the component, the minimum amount of space between
the component and the edges of its display area. Default is [0,0,0,0].

ipad x Specifies the internal padding of the component, how much space to add to the minimum
width of the component. Default is 0.

ipad y Specifies the internal padding, that is, how much space to add to the minimum height of the
component. Default is 0.

In contrast to the GridBagConstraints API, which uses anchor and fill to specify the alignment and resize
behavior of a component, JFormDesigner uses the usual h/v align notation.

Tip: The component context menu allows you to alter the alignment for multi-selections.

- 103 -

JFormDesigner 3.0 Manual

GridLayout

The grid layout manager places components in a grid of cells. Each component takes all the available space
within its cell, and each cell is exactly the same size.

This layout manager is used rarely.

GridLayout is part of the standard Java distribution.

Layout properties

A container with this layout manager has following layout properties:

Property
Name

Description

columns The number of columns. Zero means any number of columns.

rows The number of rows. Zero means any number of rows.
Note: If the number of rows is non-zero, the number of columns specified is ignored.
Instead, the number of columns is determined from the specified number or rows and the
total number of components in the layout.

horizontal gap The horizontal gap between components. Default is 0.

vertical gap The vertical gap between components. Default is 0.

- 104 -

JFormDesigner 3.0 Manual

IntelliJ IDEA GridLayout

The IntelliJ IDEA grid layout manager places components in a grid of columns and rows, allowing specified
components to span multiple columns or rows. Not all columns/rows necessarily have the same width/height.

Note: The IntelliJ IDEA grid layout manager is supported to make it easier to migrate forms, which were
created with IntelliJ IDEA's GUI builder. If you never used it, it is recommended to use one of the other grid-
based layout managers.

Use the column and row headers to insert or delete columns/rows and change column/row properties. Use
horizontal and vertical spacers, which are available in the Palette, to define space between components.

IntelliJ IDEA GridLayout is open source and not part of the standard Java distribution. You must ship an
additional library with your application. JFormDesigner includes intellij_forms_rt.jar and
intellij_forms_rt_src.zip in its redist folder. For more documentation and tutorials, visit
www.jetbrains.com/idea/.

IDE plug-ins: If you use IntelliJ IDEA GridLayout the first time, the JFormDesigner IDE plug-in ask you
whether it should copy the required library (and its source code) to the IDE project and add it to the
classpath of the IDE project.

Layout properties

A container with this layout manager has following layout properties:

Property
Name

Description

horizontal gap The horizontal gap between components. If -1, then inherits gap from parent container that
also uses IntelliJ IDEA GridLayout, or uses 10 pixel. Default is -1.

vertical gap The vertical gap between components. If -1, then inherits gap from parent container that
also uses IntelliJ IDEA GridLayout, or uses 5 pixel. Default is -1.

same size
horizontally

If true, all columns get the same width. Default is false.

same size
vertically

If true, all rows get the same height. Default is false.

margin Size of the margin between the containers border and its contents. Default is 0, 0, 0, 0.

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property
Name

Description

grid x Specifies the component's horizontal grid origin (column index).

grid y Specifies the component's vertical grid origin (row index).

- 105 -

http://www.jetbrains.com/idea/

JFormDesigner 3.0 Manual

Property
Name

Description

grid width Specifies the component's horizontal grid extend (number of columns). Default is 1.

grid height Specifies the component's vertical grid extend (number of rows). Default is 1.

fill Specifies how the component fills its cell. Possible values: None, Horizontal, Vertical and
Both. Default is None.

anchor Specifies how the component is aligned within its cell. Possible values: Center, North, North
East, East, South East, South, South West, West and North West. Default is Center.

indent The indent of the component within its cell. In pixel multiplied by 10. Default is 0.

align grid with
parent

If true, align the grid of nested containers, which use IntelliJ IDEA GridLayout, with the grid
of this container. Default is false.

horizontal size
policy

Specifies how the component affects horizontal resizing behavior. Possible values: Fixed, Can
Shrink, Can Grow, Want Grow and combinations. Default is Can Shrink and Can Grow.

vertical size
policy

Specifies how the component affects vertical resizing behavior. Possible values: Fixed, Can
Shrink, Can Grow, Want Grow and combinations. Default is Can Shrink and Can Grow.

minimum size The minimum size of the component. Default is -1, -1.

preferred size The preferred size of the component. Default is -1, -1.

maximum size The maximum size of the component. Default is -1, -1.

- 106 -

JFormDesigner 3.0 Manual

null Layout

null layout is not a real layout manager. It means that no layout manager is assigned and the components can
be put at specific x,y coordinates.

It is useful for making quick prototypes. But it is not recommended for production because it is not portable.
The fixed locations an sizes do not change with the environment (e.g. different fonts on various platforms).

Preferred sizes

JFormDesigner supports preferred sizes of child components. This solves one common problem of null layout:
the component sizes change with the environment (e.g. different fonts on various platforms). Unlike other GUI
designers, no additional library is required.

Grid

To make it easier to align components, the component edges snap to an invisible grid when moving or resizing
components. You can specify the grid step size in the Preferences dialog. To temporary disable grid snapping,
hold down the Shift key while moving or resizing components.

Keyboard

You can move selected components with Ctrl+ArrowKey and change size with Shift+ArrowKey.

Aligning components

The align commands help you to align a set of components or make them same width or height.

The dark blue handles in the above screenshot indicate the first selected component.

- 107 -

JFormDesigner 3.0 Manual

Align Left Line up the left edges of the selected components with the left edge of the first
selected component.

Align Center Horizontally line up the centers of the selected components with the center of the first
selected component.

Align Right Line up the right edges of the selected components with the right edge of the first
selected component.

Align Top Line up the top edges of the selected components with the top edge of the first
selected component.

Align Middle Vertically line up the centers of the selected components with the center of the first
selected component.

Align Bottom Line up the bottom edges of the selected components with the bottom edge of the
first selected component.

Same Width Make the selected components all the same width as the first selected component.

Same Height Make the selected components all the same height as the first selected component.

Make Horizontal
Space Equal

Makes the horizontal space between 3 or more selected components equal. The
leftmost and rightmost components stay unchanged. The other components are
horizontally distributed between the leftmost and rightmost components.

Make Vertical
Space Equal

Makes the vertical space between 3 or more selected components equal. The topmost
and bottommost components stay unchanged. The other components are vertically
distributed between the topmost and bottommost components.

Layout properties

A container with this layout manager has following layout properties:

Property
Name

Description

auto-size If true, computes the size of the container so that all children are entire visible. If false, the
size of the container in the Design view is used. Default is true.

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property
Name

Description

x The x coordinate of the component relative to the left corner of the container.

y The y coordinate of the component relative to the upper corner of the container.

width The width of the component in pixel or Preferred. If set to Preferred, the component's
preferred width is used. Default is Preferred.

height The height of the component in pixel or Preferred. If set to Preferred, the component's
preferred width is used. Default is Preferred.

- 108 -

JFormDesigner 3.0 Manual

TableLayout

The table layout manager places components in a grid of columns and rows, allowing specified components to
span multiple columns or rows. Not all columns/rows necessarily have the same width/height.

A column/row can be given an absolute size in pixels, a percentage of the available space, or it can grow and
shrink to fill the remaining space after other columns/rows have been resized.

Use the column and row headers to insert or delete columns/rows and change column/row properties.

TableLayout is open source and not part of the standard Java distribution. You must ship an additional
library with your application. JFormDesigner includes TableLayout.jar, TableLayout-javadoc.jar and
TableLayout-src.zip in its redist folder. For more documentation and tutorials, visit
tablelayout.dev.java.net.

IDE plug-ins: If you use TableLayout the first time, the JFormDesigner IDE plug-in ask you whether it
should copy the required library (and its source code and documentation) to the IDE project and add it to
the classpath of the IDE project.

Extensions

JFormDesigner extends the original TableLayout with following features:

• Default component alignment
Allows you to specify a default alignment for components within columns/rows. This is very useful for
columns with right aligned labels because you specify the alignment only once for the column and all
added labels will automatically aligned to the right.

Layout properties

A container with this layout manager has following layout properties:

Property Name Description

horizontal gap The horizontal gap between components. Default is 5.

vertical gap The vertical gap between components. Default is 5.

- 109 -

http://tablelayout.dev.java.net/

JFormDesigner 3.0 Manual

Column/row properties

Each column and row has its own properties. Use the column and row headers to change column/row
properties.

Property Name Description

Column/Row The index of the column/row. Use the arrow buttons (or Alt+Left, Alt+Right, Alt+Up,
Alt+Down keys) to edit the properties of the previous or next column/row.

Default alignment The default alignment of the components within a column/row. Used if the value of the
constraints properties "h align" or "v align" is DEFAULT.

Size Specifies how TableLayout computes the width/height of a column/row.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Constraints properties

A component contained in a container with this layout manager has following constraints properties:

Property Name Description

grid x Specifies the component's horizontal grid origin (column index).

grid y Specifies the component's vertical grid origin (row index).

grid width Specifies the component's horizontal grid extend (number of columns). Default is 1.

grid height Specifies the component's vertical grid extend (number of rows). Default is 1.

h align The horizontal alignment of the component within its cell. Possible values: DEFAULT,
LEFT, CENTER, RIGHT and FILL. Default is DEFAULT.

v align The vertical alignment of the component within its cell. Possible values: DEFAULT, TOP,
CENTER, BOTTOM and FILL. Default is DEFAULT.

In contrast to the TableLayoutConstraints API, which uses [column1,row1,column2,row2] to specify the location
and size of a component, JFormDesigner uses the usual [x,y,width,height] notation.

Tip: The component context menu allows you to alter the alignment for multi-selections.

- 110 -

JFormDesigner 3.0 Manual

Java Code Generator

JFormDesigner can generate and update Java source code. It uses the same name for the Java file as for the
Form file. E.g.:

C:\MyProject\src\com\myproject\WelcomeDialog.jfd (form file)
C:\MyProject\src\com\myproject\WelcomeDialog.java (java file)

Stand-alone: Before creating new forms, you should specify the locations of your Java source folders in the
Project dialog. Then JFormDesigner can generate valid package statements. For the above example, you should
add C:\MyProject\src.

IDE plug-ins: The source folders of the IDE projects are used.

If the Java file does not exist, JFormDesigner generates a new one. Otherwise it parses the existing Java file
and inserts/updates the code for the form and adds import statements if necessary.

Stand-alone: The Java file will be updated when saving the form file.

IDE plug-ins: If the Java file is opened in the IDE editor, it will be immediately updated in-memory on each
change in JFormDesigner. Otherwise it will be updated when saving the form file.

JFormDesigner uses special comments to identify the code sections that it will generate/update. E.g.:

// JFormDesigner - ... //GEN-BEGIN:initComponents
// JFormDesigner - ... //GEN-END:initComponents

The starting comment must contain GEN-BEGIN:<keyword>, the ending comment GEN-END:<keyword>. These
comments are Netbeans compatible. The text before GEN-BEGIN and GEN-END (in the same line) does not
matter. JFormDesigner uses the following keywords:

Keyword name Description

initComponents Used for code that instantiates and initializes the components of the form.

variables Used for code that declares the class level variables for components.

- 111 -

JFormDesigner 3.0 Manual

Nested Classes

One of the advanced features of JFormDesigner is the generation of nested classes. Normally, all code for a
form is generated into one class. If you have forms with many components, e.g. a JTabbedPane with some
tabs, it is not recommended to have only one class. If you hand-code such a form, you would create a class for
each tab.

In JFormDesigner you can specify a nested class for each component. You do this on the Code Generation tab
in the Properties view. JFormDesigner automatically generates/updates the specified nested classes. This allows
you to program more object-oriented and makes your code easier to read and maintain.

Components having a nested class are marked with a overlay symbol in the Structure view.

Example source code:

public class NestedClassDemo
 extends JPanel
{
 public NestedClassDemo() {
 initComponents();
 }

 private void initComponents() {
 // JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
 tabbedPane = new JTabbedPane();
 tab1Panel = new Tab1Panel();
 tab2Panel = new Tab2Panel();
 //======== this ========
 setLayout(new BorderLayout());
 //======== tabbedPane ========
 {
 tabbedPane.addTab("tab 1", tab1Panel);
 tabbedPane.addTab("tab 2", tab2Panel);
 }
 add(tabbedPane, BorderLayout.CENTER);
 // JFormDesigner - End of component initialization //GEN-END:initComponents
 }

 // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
 private JTabbedPane tabbedPane;
 private Tab1Panel tab1Panel;
 private Tab2Panel tab2Panel;
 // JFormDesigner - End of variables declaration //GEN-END:variables

 private class Tab1Panel
 extends JPanel
 {
 private Tab1Panel() {
 initComponents();

- 112 -

JFormDesigner 3.0 Manual

 }

 private void initComponents() {
 // JFormDesigner - Component initialization - DO NOT MODIFY //GEN-
BEGIN:initComponents
 label2 = new JLabel();
 textField1 = new JTextField();
 CellConstraints cc = new CellConstraints();
 //======== this ========
 setBorder(Borders.TABBED_DIALOG_BORDER);
 setLayout(new FormLayout(...));
 //---- label2 ----
 label2.setText("text");
 add(label2, cc.xy(1, 1));

 //---- textField1 ----
 add(textField1, cc.xy(3, 1));
 // JFormDesigner - End of component initialization //GEN-END:initComponents
 }

 // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
 private JLabel label2;
 private JTextField textField1;
 // JFormDesigner - End of variables declaration //GEN-END:variables
 }

 private class Tab2Panel
 extends JPanel
 {
 private Tab2Panel() {
 initComponents();
 }

 private void initComponents() {
 // JFormDesigner - Component initialization - DO NOT MODIFY //GEN-
BEGIN:initComponents
 label3 = new JLabel();
 checkBox1 = new JCheckBox();
 CellConstraints cc = new CellConstraints();
 //======== this ========
 setBorder(Borders.TABBED_DIALOG_BORDER);
 setLayout(new FormLayout(...));
 //---- label3 ----
 label3.setText("text");
 add(label3, cc.xy(1, 1));

 //---- checkBox1 ----
 checkBox1.setText("text");
 add(checkBox1, cc.xy(3, 1));
 // JFormDesigner - End of component initialization //GEN-END:initComponents
 }

 // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
 private JLabel label3;
 private JCheckBox checkBox1;
 // JFormDesigner - End of variables declaration //GEN-END:variables
 }
}

When changing the nested class name on the Code Generation tab (Properties view), JFormDesigner also
renames the nested class in the Java source code. When removing the nested class name, then JFormDesigner
does not remove the nested class in the Java source code to avoid loss of own source code.

- 113 -

JFormDesigner 3.0 Manual

Code Templates

When generating new Java files or classes, JFormDesigner uses the templates specified in the Preferences
dialog.

Template name Description

File header Used when creating new Java files. Contains a header comment and a package
statement.

Class Used when generating a new (nested) class. Contains a class declaration, a
constructor, a component initialization method and variable declarations.

Empty Class Used when generating a new empty class. This can happen, if all form
components are contained in nested classes.

Event Handler Body Used for event handler method bodies.

Component initialization Replaces the variable ${component_initialization} used in other templates.
Contains a method named initComponents. Invoke this method from your code
to instantiate the components of your form. Feel free to change the method
name if you don't like it.

Variables declaration Replaces the variable ${variables_declaration} used in other templates.

java.awt.Dialog A template for classes derived from java.awt.Dialog. Compared to the “Class”
template, this has special constructors, which are necessary for
java.awt.Dialog derived classes.

javax.swing.AbstractAction Used for nested action classes.

You can change the existing templates or create additional templates in the Preferences dialog. It is possible to
define your own templates for specific superclasses.

Following variables can be used in the templates:

Variable name Description Context

${date} Current date. global

${user} User name. global

${package_declaration} package statement. If the form is not saved under one of the source
folders specified in the Project dialog, the variable is empty (no
package statement will be generated).

file
header

${class_name} Name of the (nested) class. class

${component_initialization} See template “Component initialization”. class

${constructor_modifiers} Modifiers of the constructor. Based on the class modifiers. class

${extends_declaration} The extends declaration of the class; empty if the class has no
superclass.

class

${modifiers} Modifiers of the (nested) class. You can specify the default modifiers
in the Preferences dialog.

class

${variables_declaration} See template “Variables declaration”. class

- 114 -

JFormDesigner 3.0 Manual

Runtime Library

Note: If you use the Java code generator, you don't need this library.

The royalty-free runtime library allows you to load JFormDesigner XML files at runtime within your applications.
Turn off the Java code generation in the Preferences dialog if you use this library.

You'll find the library jfd-loader.jar in the redist folder; the documentation is in jfd-loader-javadoc.zip
and an example in the examples folder or examples.zip archive.

Classes

• FormLoader provides methods to load JFormDesigner .jfd files into in-memory form models.
• FormCreator creates instances of Swing components from in-memory form models and provides

methods to access components.
• FormSaver saves in-memory form models to JFormDesigner .jfd files. Can be used to convert

proprietary form specifications to JFormDesigner .jfd files: first create a in-memory form model from
your form specification, then save the model to a .jfd file.

Example

The following example demonstrates the usage of FormLoader and FormCreator. It is included in the examples
distributed with all JFormDesigner editions.

public class LoaderExample
{
 private JDialog dialog;
 public static void main(String[] args) {
 new LoaderExample();
 }

 LoaderExample() {
 try {
 // load the .jfd file into memory
 FormModel formModel = FormLoader.load(
 "com/jformdesigner/examples/LoaderExample.jfd");

 // create a dialog
 FormCreator formCreator = new FormCreator(formModel);
 formCreator.setTarget(this);
 dialog = formCreator.createDialog(null);
 // get references to components
 JTextField nameField = formCreator.getTextField("nameField")
;
 JCheckBox checkBox = formCreator.getCheckBox("checkBox");

 // set values
 nameField.setText("enter name here");
 checkBox.setSelected(true);
 // show dialog
 dialog.setModal(true);
 dialog.pack();
 dialog.show();

 System.out.println(nameField.getText());
 System.out.println(checkBox.isSelected());
 System.exit(0);
 } catch(Exception ex) {
 ex.printStackTrace();

- 115 -

JFormDesigner 3.0 Manual

 }
 }

 // event handler for checkBox
 private void checkBoxActionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(dialog, "check box clicked");
 }

 // event handler for okButton
 private void okButtonActionPerformed() {
 dialog.dispose();
 }
}

- 116 -

JFormDesigner 3.0 Manual

JavaBeans

What is a Java Bean?

A Java Bean is a reusable software component that can be manipulated visually in a builder tool.

JavaBean (components) are self-contained, reusable software units that can be visually composed into
composite components and applications. A bean is a Java class that has:

• a "null" constructor (without parameters)
• properties defined by getter and setter methods.

JFormDesigner supports:

• Visual beans (must inherit from java.awt.Component).
• Non-visual beans.

BeanInfo

JFormDesigner supports/uses following classes/interfaces specified in the java.beans package:

• BeanInfo
• BeanDescriptor
• EventSetDescriptor
• PropertyDescriptor
• PropertyEditor (incl. support for custom and paintable editors)
• Customizer

If you are writing BeanInfo classes for your custom components, you can specify additional information needed
by JFormDesigner using the java.beans.FeatureDescriptor extension mechanism.

For example implementations of BeanInfos and PropertyEditors, take a look at the examples in the examples
folder or examples.zip archive.

Attribute Name Description

isContainer
(BeanDescriptor)

Specifies whether a component is a container or not. A container can have child
components. The value must be a Boolean. Default is false. E.g.

beanDesc.setValue("isContainer", Boolean.TRUE);

containerDelegate
(BeanDescriptor)

If components should be added to a descendant of a container, then it is possible
to specify a method that returns the container for the children.
JFrame.getContentPane() is a example for such a method. The value must be a
String and specifies the name of a method that takes no arguments and returns
a java.awt.Container. E.g.

beanDesc.setValue("containerDelegate", "getContentPane");

layoutManager
(BeanDescriptor)

Allows the specification of a layout manager, which is used when adding the
component to a form. If specified, then JFormDesigner does not allow the
selection of a layout manager. The value must be a Class. E.g.

beanDesc.setValue("layoutManager", BorderLayout.class);

- 117 -

JFormDesigner 3.0 Manual

Attribute Name Description

enumerationValues
(PropertyDescriptor)

Specifies a list of valid property values. The value must be a Object[]. For each
property value, the Object[] must contain three items:

• Name: A displayable name for the property value.
• Value: The actual property value.
• Java Initialization String: A Java code piece used when generating code.

propDesc.setValue("enumerationValues", new Object[] {
 "horizontal", new Integer(JSlider.HORIZONTAL),
 "JSlider.HORIZONTAL",
 "vertical", new Integer(JSlider.VERTICAL),
 "JSlider.VERTICAL" });

extraPersistenceDelegates
(PropertyDescriptor)

Specifies a list of persistence delegates for classes. The value must be a
Object[]. For each class, the Object[] must contain two items:

• Class: The class for which the persistence delegate should be used.
• Persistence delegate: Instance of a class, which extends

java.beans.PersistenceDelegate, that should be used to persist an
instance of the specified class.

Use the attribute "persistenceDelegate" (see below) to specify a persistence
delegate for a property value. Use this attribute to specify persistence delegates
for classes that are referenced by a property value. E.g. if a property value
references classes MyClass1 and MyClass2:

propDesc.setValue("extraPersistenceDelegates", new Object[] {
 MyClass1.class, new MyClass1PersistenceDelegate(),
 MyClass2.class, new MyClass2PersistenceDelegate(),
});

imports
(PropertyDescriptor)

Specifies one or more class names for which import statements should be
generated by the Java code generator. This is useful if you don't use full qualified
class names in enumerationValues or
PropertyEditor.getJavaInitializationString(). The value must be a String
or String[]. E.g.

propDesc.setValue("imports", "com.mycompany.MyConstants");
propDesc.setValue("imports", new String[] {
 "com.mycompany.MyConstants",
 "com.mycompany.MyExtendedConstants" });

notMultiSelection
(PropertyDescriptor)

Specifies whether the property is not shown in the Properties view when multiple
components are selected. The value must be a Boolean. Default is false. E.g.

propDesc.setValue("notMultiSelection", Boolean.TRUE);

notNull
(PropertyDescriptor)

Specifies that a property can not set to null in the Properties view. If true, the
Set Value to null command is disabled. The value must be a Boolean. Default is
false. E.g.

propDesc.setValue("notNull", Boolean.TRUE);

notRestoreDefault
(PropertyDescriptor)

Specifies that a property value can not restored to the default in the Properties
view. If true, the Restore Default Value command is disabled. The value must
be a Boolean. Default is false. E.g.

propDesc.setValue("notRestoreDefault", Boolean.TRUE);

- 118 -

JFormDesigner 3.0 Manual

Attribute Name Description

persistenceDelegate
(PropertyDescriptor)

Specifies an instance of a class, which extends
java.beans.PersistenceDelegate, that can be used to persist an instance of a
property value. E.g.

propDesc.setValue("persistenceDelegate", new
MyPropPersistenceDelegate());

readOnly
(PropertyDescriptor)

Specifies that a property is read-only in the Properties view. The value must be a
Boolean. Default is false. E.g.

propDesc.setValue("readOnly", Boolean.TRUE);

transient
(PropertyDescriptor)

Specifies that the property value should not persisted and no code should
generated. The value must be a Boolean. Default is false. E.g.

propDesc.setValue("transient", Boolean.TRUE);

variableDefault
(PropertyDescriptor)

Specifies whether the default property value depends on other property values.
The value must be a Boolean. Default is false. E.g.

propDesc.setValue("variableDefault", Boolean.TRUE);

Design time

JavaBeans support the concept of "design"-mode, when JavaBeans are used in a GUI design tool, and
"run"-mode, when JavaBeans are used in an application.

You can use the method java.beans.Beans.isDesignTime() in your JavaBean to determine whether it is
running in JFormDesigner or in your application.

Reload beans

JFormDesigner supports reloading of JavaBeans.

Stand-alone: Just select View > Refresh from the menu or press F5.

IDE plug-ins: Click the Refresh button in the designer tool bar.

Refresh does following:

1. Create a new class loader for loading JavaBeans, BeanInfos and Icons.
2. Recreates the form in the active Design view.

So you can change the source code of the used JavaBeans, compile them in your IDE and use them in
JFormDesigner without restarting.

Unsupported standard components

• all AWT components

- 119 -

JFormDesigner 3.0 Manual

JGoodies Forms & Looks

JFormDesigner supports and uses software provided by JGoodies Karsten Lentzsch.

The JGoodies Forms support is very extensive. Not only the layout manager FormLayout is supported, also
some important helper classes are supported: Borders, ComponentFactory and FormFactory
(com.jgoodies.forms.factories).

JGoodies Looks look and feels are built-in so that you can preview your forms using those popular look and
feels. JGoodies Looks examples contains some useful components to build Eclipse like panels: JGoodies UIF lite.

JGoodies Forms ComponentFactory

The JGoodies Forms ComponentFactory (com.jgoodies.forms.factories) defines three factory methods, which
create components. You find these components in the palette category JGoodies.

• Label: A label with an optional mnemonic. The mnemonic and mnemonic index are defined by a single
ampersand (&). For example "&Save" or "Save &As". To use the ampersand itself duplicate it, for
example "Look&&Feel".

• Title: A label that uses the foreground color and font of a TitledBorder with an optional mnemonic.
The mnemonic and mnemonic index are defined by a single ampersand (&).

• Titled Separator: A labeled separator. Useful to separate paragraphs in a panel, which is often a
better choice than a TitledBorder.

JGoodies UIF lite

JFormDesigner supports SimpleInternalFrame and UIFSplitPane from the JGoodies UIF lite package, which is
part of the JGoodies Looks examples. You find both components in the palette category JGoodies.

SimpleInternalFrame is an Eclipse like frame. UIFSplitPane is a subclass of JSplitPane that hides the divider
border. Use UIFSplitPane if you want to put two SimpleInternalFrames into a split pane. See example
examples/UIFLitePanel.jfd.

When using one of these components, you have to add the library redist/jgoodies-uif-lite.jar to the
classpath of your application. Or add the source code to your repository and compile it into your
application. The source code is in redist/jgoodies-uif-lite-src.zip.

IDE plug-ins: If you use one of the UIF lite components the first time, the JFormDesigner IDE plug-in ask
you whether it should copy the required library (and its source code and documentation) to the IDE project
and add it to the classpath of the IDE project.

- 120 -

http://looks.dev.java.net/
http://www.jgoodies.com/

JFormDesigner 3.0 Manual

To add a toolbar to a SimpleInternalFrame, add a JToolBar to the Design view, select the
SimpleInternalFrame, select the "toolBar" property in the Properties view and assign the toolbar to it.

- 121 -

	JFormDesigner 3.0 Manual
	Contents
	JFormDesigner
	Introduction
	Key features

	What's New in JFormDesigner 3.0
	User Interface
	Menus
	Main Menu
	Context menus

	Toolbars
	Main Toolbar

	Design View
	Selecting components
	Drag feedback
	Move or copy components
	Resize components
	Morph components
	Nest in Container
	Non-visual beans
	Red beans

	Headers
	Selecting columns/rows
	Insert column/row
	Delete columns/rows
	Split columns/rows
	Move columns/rows
	Resize columns/rows
	Header symbols

	In-place-editing
	Keyboard Navigation
	Menu Designer
	Menu bar structure
	Creating menu bars
	Creating popup menus
	Assign popup menus to components

	Button groups
	Group Buttons
	Ungroup Buttons
	ButtonGroup object

	JTabbedPane
	Events
	Add Event Handlers
	Remove Event Handlers
	Change Handler Method Name

	Palette
	Choose Bean
	Search tab
	JARs tab
	Other options

	Palette Manager

	Structure View
	Properties View
	Properties tab
	Code Generation tab
	"(form)" properties

	Property Editors
	Built-in property editors
	ActionMap (javax.swing)
	Border (javax.swing)
	Color (java.awt)
	ComboBoxModel (javax.swing)
	Cursor (java.awt)
	Dimension (java.awt)
	Font (java.awt)
	Icon (javax.swing) and Image (java.awt)
	InputMap (javax.swing)
	Insets (java.awt)
	KeyStroke (javax.swing)
	ListModel (javax.swing)
	Object (java.lang)
	Point (java.awt)
	Rectangle (java.awt)
	SpinnerModel (javax.swing)
	String (java.lang)
	TableModel (javax.swing)
	TreeModel (javax.swing)

	Layout Properties
	Constraints Properties
	Client Properties
	What is a client property?
	Define client properties
	Edit client properties

	Error Log View
	How to fix errors

	Localization
	Create a new localized form
	Edit localization settings and resource bundle strings
	Create new locale
	Delete a locale
	Externalize strings
	Internalize strings
	Choose existing strings

	Projects
	General
	Source Folders
	Classpath

	Preferences
	Import and export preferences
	FormLayout (JGoodies)
	Custom column/row templates

	null Layout
	Localization
	Look and Feels
	Java Code Generator
	Templates (Java Code Generator)
	Layout Managers (Java Code Generator)
	Localization (Java Code Generator)
	Client Properties
	BeanInfo Search Path
	Squint Test

	IDE Integrations
	Eclipse plug-in
	Benefits
	User interface
	Creating new forms
	Open forms for editing
	Go to Java code
	Code folding
	Convert Netbeans and IntelliJ IDEA forms
	Preferences

	IntelliJ IDEA plug-in
	Benefits
	User interface
	Creating new forms
	Open forms for editing
	Go to Java code / go to form
	Code folding
	Convert IntelliJ IDEA and Netbeans forms
	Settings
	Keyboard shortcuts

	Other IDEs
	IDE interworking

	Layout Managers
	How to choose a layout manager?
	Change layout manager

	BorderLayout
	Layout properties
	Constraints properties

	BoxLayout
	Layout properties

	CardLayout
	Layout properties
	Constraints properties

	FlowLayout
	Layout properties

	FormLayout (JGoodies)
	Layout properties
	Column/row properties
	Constraints properties

	Column/Row Templates
	Column templates
	Row templates

	Column/Row Groups
	Group columns/rows
	Ungroup columns/lines
	Group IDs

	GridBagLayout
	Extensions
	Layout properties
	Column/row properties
	Constraints properties

	GridLayout
	Layout properties

	IntelliJ IDEA GridLayout
	Layout properties
	Constraints properties

	null Layout
	Preferred sizes
	Grid
	Keyboard
	Aligning components
	Layout properties
	Constraints properties

	TableLayout
	Extensions
	Layout properties
	Column/row properties
	Constraints properties

	Java Code Generator
	Nested Classes
	Code Templates
	Runtime Library
	Classes
	Example

	JavaBeans
	BeanInfo
	Design time
	Reload beans
	Unsupported standard components

	JGoodies Forms & Looks
	JGoodies Forms ComponentFactory
	JGoodies UIF lite

